积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部云计算&大数据(18)Apache Flink(18)

语言

全部英语(16)中文(简体)(2)

格式

全部PDF文档 PDF(18)
 
本次搜索耗时 0.013 秒,为您找到相关结果约 18 个.
  • 全部
  • 云计算&大数据
  • Apache Flink
  • 全部
  • 英语
  • 中文(简体)
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 Streaming in Apache Flink

    develop Flink programs • Implement streaming data processing pipelines • Flink managed state • Event time Streaming in Apache Flink • Streams are natural • Events of any type like sensors, click subset of stream processing Processing Data Dataflows Let's Talk About Time • Processing Time • Event Time • Events may arrive out of order! What Can Be Streamed? • Anything (if you write a serializer/deserializer none exists for this key if (average == null) average = new MovingAverage(2); // add this event to the moving average average.add(item.f1); averageState.update(average); // return
    0 码力 | 45 页 | 3.00 MB | 1 年前
    3
  • pdf文档 Notions of time and progress - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    Vasiliki Kalavri | Boston University 2020 • Processing time • the time of the local clock where an event is being processed • a processing-time window wouldn’t account for game activity while the train results depend on the processing speed and aren’t deterministic • Event time • the time when an event actually happened • an event-time window would give you the extra life • results are deterministic Clones Episode III: Revenge of the Sith Episode VII: The Force Awakens This is called event time This is called processing time Vasiliki Kalavri | Boston University 2020 • What if you were
    0 码力 | 22 页 | 2.22 MB | 1 年前
    3
  • pdf文档 Stream ingestion and pub/sub systems - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    • might fail (or seem as if they failed) Streaming sources… 3 Producers and consumers • An event is typically generated by a producer (or publisher or sender) and processed by one or multiple consumers consumer • Event retrieval is not defined by content / structure but its order • FIFO, priority producer consumer queue 6 Message brokers Message broker: a system that connects event producers with with event consumers. • It receives messages from the producers and pushes them to the consumers. • A TCP connection is a simple messaging system which connects one sender with one recipient.
    0 码力 | 33 页 | 700.14 KB | 1 年前
    3
  • pdf文档 Windows and triggers - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    execution environment val env = StreamExecutionEnvironment.getExecutionEnvironment // use event time for the application env.setStreamTimeCharacteristic(TimeCharacteristic.EventTime) // window assigners for the most common windowing use cases: • They assign an element based on its event-time timestamp or the current processing time to windows. • Time windows have a start and an assigners provide a default trigger that triggers the evaluation of a window once the (processing or event) time passes the end of the window. • A window is created when the first element is assigned to
    0 码力 | 35 页 | 444.84 KB | 1 年前
    3
  • pdf文档 Streaming languages and operator semantics - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    bound advances for every new event • all events since 1/1/2019 • Sliding windows have fixed size but both their bounds advance for new events • last 10 events or event in the last minute • Tumble • Group by / Partition Operators split a stream into sub-streams according to a function or the event contents. • one stream per customer Id • round-robin assignment 19 Vasiliki Kalavri | Boston order, ask for a refund immediately, and then cancel the order webevents(CustomerID, ItemID, Event, Amount, Time) 0 3 2 1 order refund cancel 42 Vasiliki Kalavri | Boston University 2020
    0 码力 | 53 页 | 532.37 KB | 1 年前
    3
  • pdf文档 监控Apache Flink应用程序(入门)

    this operator has emitted caolei – 监控Apache Flink应用程序(入门) 进度和吞吐量监控 – 13 4.7 仪表盘示例 Figure 4: Event Time Lag per Subtask of a single operator in the topology. In this case, the watermark is lagging speaking, latency is the delay between the creation of an event and the time at which results based on this event become visible. Once the event is created it is usually stored in a persistent message queue for growing state are very application-specific. Typically, an increasing number of keys, a large event-time skew between different input streams or simply missing state cleanup may cause growing state
    0 码力 | 23 页 | 148.62 KB | 1 年前
    3
  • pdf文档 Stream processing fundamentals - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    streams update relation tables and derived streams update materialized views. • An operator outputs event streams that describe the changing view computed over the input stream according to the relational streams update relation tables and derived streams update materialized views. • An operator outputs event streams that describe the changing view computed over the input stream according to the relational streams update relation tables and derived streams update materialized views. • An operator outputs event streams that describe the changing view computed over the input stream according to the relational
    0 码力 | 45 页 | 1.22 MB | 1 年前
    3
  • pdf文档 High-availability, recovery semantics, and guarantees - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    1. receive an event 2. store in local buffer and possibly update state 3. produce output 5 mi mo Vasiliki Kalavri | Boston University 2020 What is a failure? op 1. receive an event 2. store in output 5 mi mo Vasiliki Kalavri | Boston University 2020 What is a failure? op 1. receive an event 2. store in local buffer and possibly update state 3. produce output 5 mi mo Was mi fully processed delivered downstream? Vasiliki Kalavri | Boston University 2020 What is a failure? op 1. receive an event 2. store in local buffer and possibly update state 3. produce output What can go wrong: • lost
    0 码力 | 49 页 | 2.08 MB | 1 年前
    3
  • pdf文档 Scalable Stream Processing - Spark Streaming and Flink

    has been consumed or not. ▶ No built-in timeouts • Think what would happen in our example, if the event signaling the end of the user session was lost, or had not arrived for some reason. 48 / 79 mapWithState returns another streaming DF 63 / 79 Window Operation ▶ Aggregations over a sliding event-time window. • Event-time is the time embedded in the data, not the time Spark receives them. ▶ Use groupBy() streaming uses watermarks to measure progress in event time. ▶ Watermarks flow as part of the data stream and carry a timestamp t. ▶ A W(t) declares that event time has reached time t in that stream • There
    0 码力 | 113 页 | 1.22 MB | 1 年前
    3
  • pdf文档 Apache Flink的过去、现在和未来

    17亿/秒 Flink 的过去 offline Real-time Batch Processing Continuous Processing & Streaming Analytics Event-driven Applications ✔ 现在 Flink 1.9 的架构变化 Runtime Distributed Streaming Dataflow Query Processor 中文社区 Flink 的现在 offline Real-time Batch Processing Continuous Processing & Streaming Analytics Event-driven Applications ✔ ✔ 未来 Micro Services O_0 O_1 I_0 I_1 I_2 P_0 P_1 P_2 S_0 S_1 Order Async Call Auto Scale State Management Event Driven Flink 的未来 offline Real-time Batch Processing Continuous Processing & Streaming Analytics Event-driven Applications ✔ ✔ ✔ 扫码加入社群 与志同道合的码友一起
    0 码力 | 33 页 | 3.36 MB | 1 年前
    3
共 18 条
  • 1
  • 2
前往
页
相关搜索词
StreaminginApacheFlinkNotionsoftimeandprogressCS591K1DataStreamProcessingAnalyticsSpring2020ingestionpubsubsystemsWindowstriggerslanguagesoperatorsemantics监控应用程序应用程序入门processingfundamentalsHighavailabilityrecoveryguaranteesScalableSpark过去现在未来
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩