积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部云计算&大数据(9)Apache Flink(9)

语言

全部英语(9)

格式

全部PDF文档 PDF(9)
 
本次搜索耗时 0.025 秒,为您找到相关结果约 9 个.
  • 全部
  • 云计算&大数据
  • Apache Flink
  • 全部
  • 英语
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 Scalable Stream Processing - Spark Streaming and Flink

    object. • It receives the data from a source and stores it in Spark’s memory for processing. ▶ Three categories of streaming sources: 1. Basic sources directly available in the StreamingContext API object. • It receives the data from a source and stores it in Spark’s memory for processing. ▶ Three categories of streaming sources: 1. Basic sources directly available in the StreamingContext API and incrementally updates the result. 57 / 79 Programming Model (2/2) 58 / 79 Output Modes ▶ Three output modes: 1. Append: only the new rows appended to the result table since the last trigger will
    0 码力 | 113 页 | 1.22 MB | 1 年前
    3
  • pdf文档 Streaming languages and operator semantics - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    produce results from the matches. Language Types 3 Vasiliki Kalavri | Boston University 2020 Three classes of operators: • relation-to-relation: similar to standard SQL and define queries over User-Defined Aggregates (UDAs) Constructs that allow the definition of custom aggregations using three statement groups: • INITIALIZE: initialized local state. • ITERATE: update state based on new single Stream Every monotonic function F on an input data stream can be computed by a UDA that uses three local tables, IN, TAPE, and OUT, and performs the following operations for each new arriving tuple:
    0 码力 | 53 页 | 532.37 KB | 1 年前
    3
  • pdf文档 Filtering and sampling streams - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    values • the sum of the squares of the values • the number of observations We can compute the three summary values in a single pass through the data. • μ = sum / count • var = (sum of squares / count) values • the sum of the squares of the values • the number of observations We can compute the three summary values in a single pass through the data. • μ = sum / count • var = (sum of squares / count)
    0 码力 | 74 页 | 1.06 MB | 1 年前
    3
  • pdf文档 Stream processing fundamentals - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    Vasiliki Kalavri | Boston University 2020 Such a relation sequence could be represented in various ways: • as the concatenation of serializations of the relations. • as a list of tuple-index pairs,
    0 码力 | 45 页 | 1.22 MB | 1 年前
    3
  • pdf文档 Streaming optimizations - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    Boston University 2020 9 Identify the most efficient way to execute a query • There may exist several ways to execute a computation • query plans, e.g. order of operators • scheduling and placement decisions
    0 码力 | 54 页 | 2.83 MB | 1 年前
    3
  • pdf文档 Fault-tolerance demo & reconfiguration - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    • e.g. you can configure that an application be restarted as long as it did not fail more than three times in the last ten minutes. • The no-restart strategy does not restart an application, but fails
    0 码力 | 41 页 | 4.09 MB | 1 年前
    3
  • pdf文档 Streaming in Apache Flink

    Stateful Enrichment of Rides and Fares Time and Analytics Event Time • Flink explicitly supports three different notions of time: • Event time • Ingestion time • Processing time (default) final
    0 码力 | 45 页 | 3.00 MB | 1 年前
    3
  • pdf文档 Elasticity and state migration: Part I - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    Kalavri, John Liagouris, Moritz Hoffmann, Desislava Dimitrova, Matthew Forshaw, and Timothy Roscoe. Three steps is all you need: fast, accurate, automatic scaling decisions for distributed streaming dataflows
    0 码力 | 93 页 | 2.42 MB | 1 年前
    3
  • pdf文档 Exactly-once fault-tolerance in Apache Flink - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    process at least 30s without checkpointing cpConfig.setMinPauseBetweenCheckpoints(30000); // allow three checkpoints to be in progress at the same time cpConfig.setMaxConcurrentCheckpoints(3); // checkpoints
    0 码力 | 81 页 | 13.18 MB | 1 年前
    3
共 9 条
  • 1
前往
页
相关搜索词
ScalableStreamProcessingSparkStreamingandFlinklanguagesoperatorsemanticsCS591K1DataAnalyticsSpring2020FilteringsamplingstreamsprocessingfundamentalsoptimizationsFaulttolerancedemoreconfigurationinApacheElasticitystatemigrationPartExactlyoncefault
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩