积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部云计算&大数据(11)Apache Flink(11)

语言

全部英语(11)

格式

全部PDF文档 PDF(11)
 
本次搜索耗时 0.017 秒,为您找到相关结果约 11 个.
  • 全部
  • 云计算&大数据
  • Apache Flink
  • 全部
  • 英语
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 Stream ingestion and pub/sub systems - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    Analytics Vasiliki (Vasia) Kalavri
 vkalavri@bu.edu Spring 2020 1/28: Stream ingestion and pub/sub systems Streaming sources Files, e.g. transaction logs Sockets IoT devices and sensors Databases might process a message out-of-order or twice 14 How can we avoid this? 15 Publish/Subscribe Systems publisher publisher publisher publisher subscriber notify() subscriber notify() subscriber subscribe notify unsubscribe advertise(): information reg. future events Publish/Subscribe Systems 17 Pub/Sub levels of de-coupling • Space: interacting parties do not need to know each other
    0 码力 | 33 页 | 700.14 KB | 1 年前
    3
  • pdf文档 Scalable Stream Processing - Spark Streaming and Flink

    The Course Web Page https://id2221kth.github.io 1 / 79 Where Are We? 2 / 79 Stream Processing Systems Design Issues ▶ Continuous vs. micro-batch processing ▶ Record-at-a-Time vs. declarative APIs streaming sources: 1. Basic sources directly available in the StreamingContext API, e.g., file systems, socket connections. 2. Advanced sources, e.g., Kafka, Flume, Kinesis, Twitter. 3. Custom sources streaming sources: 1. Basic sources directly available in the StreamingContext API, e.g., file systems, socket connections. 2. Advanced sources, e.g., Kafka, Flume, Kinesis, Twitter. 3. Custom sources
    0 码力 | 113 页 | 1.22 MB | 1 年前
    3
  • pdf文档 Course introduction - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    distributed streaming 4 Fundamental for representing, summarizing, and analyzing data streams Systems Algorithms Architecture and design Scheduling and load management Scalability and elasticity streaming systems • be proficient in using Apache Flink and Kafka to build end-to-end, scalable, and reliable streaming applications • have a solid understanding of how stream processing systems work and industry • Learn from experts with decades of hands-on experience in building and using distributed systems and data management platforms • Have fun! 10 Vasiliki Kalavri | Boston University 2020 Important
    0 码力 | 34 页 | 2.53 MB | 1 年前
    3
  • pdf文档 Stream processing fundamentals - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    Boston University 2020 Dataflow Streaming Model Vasiliki Kalavri | Boston University 2020 Dataflow Systems Distributed execution Partitioned state Exact results Out-of-order support Single-node execution execution Synopses and sketches Approximate results In-order data processing Stream Database Systems 2000 1992 2013 MapReduce 2004 Tapestry NiagaraCQ Aurora TelegraphCQ STREAM Naiad Spark Streaming Evolution of Stream Processing 35 Vasiliki Kalavri | Boston University 2020 Distributed dataflow systems • Computations as Directed Acyclic Graphs (DAGs) • nodes are operators and edges are data channels
    0 码力 | 45 页 | 1.22 MB | 1 年前
    3
  • pdf文档 Streaming optimizations - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    D A B C D ??? Vasiliki Kalavri | Boston University 2020 22 • Multi-tenancy • in streaming systems that build one dataflow graph for several queries • when applications analyze data streams from Operator Placement for Stream-Processing Systems. ICDE 2006. • Brian Babcock et. al. Chain : Operator Scheduling for Memory Minimization in Data Stream Systems. SIGMOD 2003. • Donald Carney et. al.
    0 码力 | 54 页 | 2.83 MB | 1 年前
    3
  • pdf文档 Streaming languages and operator semantics - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    Operators • Probably the most important operators in stream processing systems • Almost universally supported across streaming systems and languages albeit with various names and semantics • Allow un-blocking
    0 码力 | 53 页 | 532.37 KB | 1 年前
    3
  • pdf文档 High-availability, recovery semantics, and guarantees - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    in dataflow computations 3 Vasiliki Kalavri | Boston University 2020 4 Distributed streaming systems will fail • how can we guard state against failures and guarantee correct results after recovery
    0 码力 | 49 页 | 2.08 MB | 1 年前
    3
  • pdf文档 Graph streaming algorithms - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    ?? Vasiliki Kalavri | Boston University 2020 Batch Graph Processing 9 Batch graph processing systems, such as Apache Graph, GraphX, Pregel, operate offline. They are built to analyze a snapshot of
    0 码力 | 72 页 | 7.77 MB | 1 年前
    3
  • pdf文档 Exactly-once fault-tolerance in Apache Flink - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    initiating process 18 The Chandy-Lamport Algorithm A snapshot algorithm that is used in distributed systems for recording a consistent global state of an asynchronous system ??? Vasiliki Kalavri | Boston a streaming application • Some result records might be emitted multiple times to downstream systems 50 ??? Vasiliki Kalavri | Boston University 2020 End-to-end exactly once • Flink’s checkpointing a streaming application • Some result records might be emitted multiple times to downstream systems 50 How can we ensure exactly-once output? ??? Vasiliki Kalavri | Boston University 2020 Enabling
    0 码力 | 81 页 | 13.18 MB | 1 年前
    3
  • pdf文档 PyFlink 1.15 Documentation

    fine-grained control over state and timer, which allows for the implementation of advanced event-driven systems. You can run the latest version of these examples by yourself in ‘Live Notebook: DataStream’ at
    0 码力 | 36 页 | 266.77 KB | 1 年前
    3
共 11 条
  • 1
  • 2
前往
页
相关搜索词
StreamingestionandpubsubsystemsCS591K1DataProcessingAnalyticsSpring2020ScalableSparkStreamingFlinkCourseintroductionprocessingfundamentalsoptimizationslanguagesoperatorsemanticsHighavailabilityrecoveryguaranteesGraphstreamingalgorithmsExactlyoncefaulttoleranceinApachePy1.15Documentation
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩