积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部云计算&大数据(7)Apache Flink(7)

语言

全部英语(6)中文(简体)(1)

格式

全部PDF文档 PDF(7)
 
本次搜索耗时 0.011 秒,为您找到相关结果约 7 个.
  • 全部
  • 云计算&大数据
  • Apache Flink
  • 全部
  • 英语
  • 中文(简体)
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 Skew mitigation - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    Stream Processing and Analytics Vasiliki (Vasia) Kalavri
 vkalavri@bu.edu Spring 2020 4/16: Skew mitigation ??? Vasiliki Kalavri | Boston University 2020 Key partitioning 2 w2 w1 w3 round-robin keys cause imbalance w2 w1 w3 ??? Vasiliki Kalavri | Boston University 2020 Addressing skew • To address skew, the system needs to track the frequencies of the partitioning key values. • We can then
    0 码力 | 31 页 | 1.47 MB | 1 年前
    3
  • pdf文档 Fault-tolerance demo & reconfiguration - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    or change business logic • Optimize execution plan • Change operator placement • skew and straggler mitigation • Migrate to a different cluster or software version 9 Reconfiguration cases ??? changes: external workload and system performance • Identify bottleneck operators, straggler workers, skew • Enumerate scaling actions, predict their effects, and decide which and when to apply • Allocate changes: external workload and system performance • Identify bottleneck operators, straggler workers, skew • Enumerate scaling actions, predict their effects, and decide which and when to apply • Allocate
    0 码力 | 41 页 | 4.09 MB | 1 年前
    3
  • pdf文档 Streaming optimizations - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    Vasiliki Kalavri | Boston University 2020 39 • If it compensates for skew, e.g. when there exist popular keys • if there is skew, throughput is bounded by the instance that receives the highest load Carney et. al. Operator Scheduling in a Data Stream Manager. VLDB 2003. • Load balancing and skew mitigation • Muhammad Anis Uddin Nasir et. al. The power of both choices: Practical load balancing for
    0 码力 | 54 页 | 2.83 MB | 1 年前
    3
  • pdf文档 监控Apache Flink应用程序(入门)

    = 30的事件时间窗口将被关闭并计算。 因此,您应该在应用程序中对事件时间敏感的operators(如流程函数和窗口)上监控watermarks。如果当前处理 时间与被称为 even-time skew的watermarks之间的差异非常高,那么它通常意味着可能会出现两种情况。首 先,它可能意味着您只是在处理旧的事件,例如在停机后的追赶期间,或者当您的工作无法继续,而事件正在 排队时。其次,它可 state are very application-specific. Typically, an increasing number of keys, a large event-time skew between different input streams or simply missing state cleanup may cause growing state. • NonHeap after recovering from a downtime. During this time you will see a much higher latency (event-time skew) than usual. A sudden increase in the CPU load might also be attributed to high garbage collection
    0 码力 | 23 页 | 148.62 KB | 1 年前
    3
  • pdf文档 Flow control and load shedding - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    tasks are connected via virtual channels multiplexed over TCP connections: • In the presence of skew, a single overload channel can cause the slowdown of the entire dataflow… can we do better? 25 blocking excess traffic outside the network to protect it. • This is crucial in the presence of data skew where a single overloaded task could otherwise block the flow of data to all other downstream operator
    0 码力 | 43 页 | 2.42 MB | 1 年前
    3
  • pdf文档 Filtering and sampling streams - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    synopses such as histograms can provide much faster estimates. • Sampling is generally sensitive to skew and outliers. • It is difficult to find a good estimator for some queries: • How can we scale
    0 码力 | 74 页 | 1.06 MB | 1 年前
    3
  • pdf文档 Elasticity and state migration: Part I - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    changes: external workload and system performance • Identify bottleneck operators, straggler workers, skew • Enumerate scaling actions, predict their effects, and decide which and when to apply • Allocate
    0 码力 | 93 页 | 2.42 MB | 1 年前
    3
共 7 条
  • 1
前往
页
相关搜索词
SkewmitigationCS591K1DataStreamProcessingandAnalyticsSpring2020FaulttolerancedemoreconfigurationStreamingoptimizations监控ApacheFlink应用程序应用程序入门FlowcontrolloadsheddingFilteringsamplingstreamsElasticitystatemigrationPart
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩