积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部云计算&大数据(20)Apache Flink(20)

语言

全部英语(18)中文(简体)(2)

格式

全部PDF文档 PDF(20)
 
本次搜索耗时 0.013 秒,为您找到相关结果约 20 个.
  • 全部
  • 云计算&大数据
  • Apache Flink
  • 全部
  • 英语
  • 中文(简体)
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 PyFlink 1.15 Documentation

    Python Virtual Environment . . . . . . . . . . . . . . . . . . . 24 1.3.2.2 O2: How to add Python Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 1.3.3 JDK issues . . . . . . . . . separate environment for each project. It is a directory tree which contains its own Python executable files and the installed Python packages. It is useful for local development to create a standalone Python word_count.py # You will see outputs as following: # Use --input to specify file input. # Printing result to stdout. Use --output to specify output path. # +I[To, 1] # +I[be,, 1] # +I[or, 1] # +I[not, 1]
    0 码力 | 36 页 | 266.77 KB | 1 年前
    3
  • pdf文档 PyFlink 1.16 Documentation

    Python Virtual Environment . . . . . . . . . . . . . . . . . . . 24 1.3.2.2 O2: How to add Python Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 1.3.3 JDK issues . . . . . . . . . separate environment for each project. It is a directory tree which contains its own Python executable files and the installed Python packages. It is useful for local development to create a standalone Python word_count.py # You will see outputs as following: # Use --input to specify file input. # Printing result to stdout. Use --output to specify output path. # +I[To, 1] # +I[be,, 1] # +I[or, 1] # +I[not, 1]
    0 码力 | 36 页 | 266.80 KB | 1 年前
    3
  • pdf文档 Scalable Stream Processing - Spark Streaming and Flink

    TCP socket connection. ssc.socketTextStream("localhost", 9999) ▶ File stream • Reads data from files. streamingContext.fileStream[KeyClass, ValueClass, InputFormatClass](dataDirectory) streamingContext TCP socket connection. ssc.socketTextStream("localhost", 9999) ▶ File stream • Reads data from files. streamingContext.fileStream[KeyClass, ValueClass, InputFormatClass](dataDirectory) streamingContext DStream of (word, 1). ▶ Get the frequency of words in each batch of data. ▶ Finally, print the result. val pairs = words.map(word => (word, 1)) val wordCounts = pairs.reduceByKey(_ + _) wordCounts
    0 码力 | 113 页 | 1.22 MB | 1 年前
    3
  • pdf文档 Stream processing fundamentals - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    ETL process complex fast and light-weight ETL: Extract-Transform-Load
 e.g. unzipping compressed files, data cleaning and standardization 6 Vasiliki Kalavri | Boston University 2020 1. Process events bear a valid timestamp, Vs, after which they are considered valid and they can contribute to the result. • alternatively, events can have validity intervals. • The contents of the relation at time indexes and materialized views for high rates. • Incremental computation: do we recompute the result from scratch whenever a new record is appended to the stream table? Synopses: Maintain summaries
    0 码力 | 45 页 | 1.22 MB | 1 年前
    3
  • pdf文档 Stream ingestion and pub/sub systems - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    Kalavri
 vkalavri@bu.edu Spring 2020 1/28: Stream ingestion and pub/sub systems Streaming sources Files, e.g. transaction logs Sockets IoT devices and sensors Databases and KV stores Message queues subscription. • DB query results depend on a snapshot and clients are not notified if their query result changes later. 13 Message delivery and ordering Acknowledgements are messages from the client
    0 码力 | 33 页 | 700.14 KB | 1 年前
    3
  • pdf文档 Flink如何实时分析Iceberg数据湖的CDC数据

    delete fileO 写T思l 1N5oFitioA ,elete File和nR SeD3umP大Qi己SeD3um 的,ata FileS 04I3M 2N-DualitJ ,elete File和n RSeD3um小Qi己SeD3um 的,ata FileS 04I3O 读取思l *CClJ ,eletioA *CClJ ,eletioA 5AnFDeNOSRTVU :1 :2 :3 f4 Ice4erg/Are3m1riAer Ice4erg/Are3m1riAer Ice4erg/Are3m1riAer 1 1riAe records Ao D3A3/DeleAe Files. F量文E集I1A4ns4cCion提D /4ACiCion-2 -cebeAg .eC4sCoAe /4ACiCion-1 /4ACiCion-3 -cebeAg D4C4 )enCeA ((3-2 -cebeAgSCAe4m2AiCeA -cebeAgSCAe4m2AiCeA -cebeAgSCAe4m2AiCeA 1 2AiCe AecoAds Co D4C4/DeleCe Files. -cebeAgFiles)ommiCCeA 2 EmiC compleCed D4C4File Co commiCCeA. f1 f2 f3 f4 F量文E集I1A4ns4cCion提D
    0 码力 | 36 页 | 781.69 KB | 1 年前
    3
  • pdf文档 High-availability, recovery semantics, and guarantees - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    produce output What can go wrong: • lost events • duplicate or lost state updates • wrong result 5 mi mo Was mi fully processed? Was mo delivered downstream? Vasiliki Kalavri | Boston University University 2020 Processing guarantees and result semantics 11 sum 4 3 2 1 0 … Vasiliki Kalavri | Boston University 2020 Processing guarantees and result semantics 11 sum 4 3 2 1 … 1 5 Vasiliki University 2020 Processing guarantees and result semantics 11 sum 4 3 1 3 3 … 5 6 Vasiliki Kalavri | Boston University 2020 Processing guarantees and result semantics 11 sum 5 4 3 6 6 … 6 7 1
    0 码力 | 49 页 | 2.08 MB | 1 年前
    3
  • pdf文档 Streaming optimizations - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    conditions does the optimization preserve correctness? • maintain state semantics • maintain result and selectivity semantics • Dynamism: can the optimization be applied during runtime or does it attributes A writes to. • Commutativity: the results of applying A and then B must be the same as the result of applying B and then A. • holds if both operators are stateless Operator re-ordering B A A attributes A writes to. • commutativity: the results of applying A and then B must be the same as the result of applying B and then A. • holds if both operators are stateless Re-ordering split and merge
    0 码力 | 54 页 | 2.83 MB | 1 年前
    3
  • pdf文档 Windows and triggers - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    • They maintain a single value as window state and eventually emit the aggregated value as the result. • ReduceFunction and AggregateFunction • Full window functions collect all elements of a window accumulator); // compute the result from the accumulator and return it. OUT getResult(ACC accumulator); // merge two accumulators and return the result. ACC merge(ACC a, ACC b); } 16 Input type Accumulator type Output type Initialization Accumulate one element Compute the result Merge two partial accumulators Vasiliki Kalavri | Boston University 2020 Use the ProcessWindowFunction
    0 码力 | 35 页 | 444.84 KB | 1 年前
    3
  • pdf文档 Fault-tolerance demo & reconfiguration - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    rate : throughput Why is it necessary? ??? Vasiliki Kalavri | Boston University 2020 • Ensure result correctness • reconfiguration mechanism often relies on fault-tolerance mechanism • State re-partitioning Re-partition and migrate state in a consistent manner • Block and unblock computations to ensure result correctness ??? Vasiliki Kalavri | Boston University 2020 Control: When and how much to adapt? Re-partition and migrate state in a consistent manner • Block and unblock computations to ensure result correctness ??? Vasiliki Kalavri | Boston University 2020 Control: When and how much to adapt?
    0 码力 | 41 页 | 4.09 MB | 1 年前
    3
共 20 条
  • 1
  • 2
前往
页
相关搜索词
PyFlink1.15Documentation1.16ScalableStreamProcessingSparkStreamingandprocessingfundamentalsCS591K1DataAnalyticsSpring2020ingestionpubsubsystems如何实时分析Iceberg数据CDCHighavailabilityrecoverysemanticsguaranteesoptimizationsWindowstriggersFaulttolerancedemoreconfiguration
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩