积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部云计算&大数据(13)Apache Flink(13)

语言

全部英语(12)中文(简体)(1)

格式

全部PDF文档 PDF(13)
 
本次搜索耗时 0.018 秒,为您找到相关结果约 13 个.
  • 全部
  • 云计算&大数据
  • Apache Flink
  • 全部
  • 英语
  • 中文(简体)
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 Streaming optimizations - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    University 2020 9 Identify the most efficient way to execute a query • There may exist several ways to execute a computation • query plans, e.g. order of operators • scheduling and placement decisions • How can we estimate the cost of different strategies? • before execution or during runtime Query optimization (I) ??? Vasiliki Kalavri | Boston University 2020 10 Optimization strategies • enumerate (if running in the cloud) Query optimization (II) ??? Vasiliki Kalavri | Boston University 2020 Cost-based optimization 11 Parsed program representation Optimizer statistics input plan A plan
    0 码力 | 54 页 | 2.83 MB | 1 年前
    3
  • pdf文档 Filtering and sampling streams - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    • we can store a fixed proportion of the stream, e.g. 1/10th 7 search engine query, timestamp> query stream Example use-case: Web search user behavior study Q: How many queries did users issued n queries in the last month: • s of those are unique • d of those are duplicates • no query was issued more than twice 9 How many of Ted’s queries will be in the 1/10th sample, S? Each of a flag indicating whether they belong to the sample or not • When a query arrives: • if the user is sampled: add the query to S • if we haven’t seen the user before: generate a random integer ru
    0 码力 | 74 页 | 1.06 MB | 1 年前
    3
  • pdf文档 Flow control and load shedding - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    5 ??? Vasiliki Kalavri | Boston University 2020 Load shedding as an optimization problem N: query network I: set of input streams with known arrival rates C: system processing capacity H: headroom continuously monitors input rates or other system metrics and can access information about the running query plan • It detects overload and decides what actions to take in order to maintain acceptable latency Fast approximate answers … S1 S2 Sr Input Manager Scheduler QoS Monitor Load Shedder Query Execution Engine Qm Q2 Q1 Ad-hoc or continuous queries Input streams … ??? Vasiliki Kalavri
    0 码力 | 43 页 | 2.42 MB | 1 年前
    3
  • pdf文档 Stream processing fundamentals - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    single-pass Updates arbitrary append-only Update rates relatively low high, bursty Processing Model query-driven / pull-based data-driven / push-based Queries ad-hoc continuous Latency relatively high low • Derived stream: produced by a continuous query and its operators, e.g. total traffic from a source every minute ins_r(P:i) = insert(i, {j | j ∈ ins_r(P) ^ j.A ≠ i.A}). 28 Vasiliki Kalavri | Boston University 2020 Query processing challenges • Memory requirements: we cannot store the whole stream history. • Data rate:
    0 码力 | 45 页 | 1.22 MB | 1 年前
    3
  • pdf文档 Scalable Stream Processing - Spark Streaming and Flink

    engine. ▶ Perform database-like query optimizations. 56 / 79 Programming Model (1/2) ▶ Two main steps to develop a Spark stuctured streaming: ▶ 1. Defines a query on the input table, as a static table table. • Spark automatically converts this batch-like query to a streaming execution plan. ▶ 2. Specify triggers to control when to update the results. • Each time a trigger fires, Spark checks for develop a Spark stuctured streaming: ▶ 1. Defines a query on the input table, as a static table. • Spark automatically converts this batch-like query to a streaming execution plan. ▶ 2. Specify triggers
    0 码力 | 113 页 | 1.22 MB | 1 年前
    3
  • pdf文档 Streaming languages and operator semantics - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    • A Blocking query operator can only return answers when it detects the end of its input. • NOT IN, set difference and division, traditional SQL aggregates • A Non-blocking query operator can produce operator, iff F is monotonic with respect to the partial ordering ⊆. A query Q on a stream S can be implemented by a non-blocking query operator iff Q(S) is monotonic with respect to ⊆. The traditional introduction of a new empl can only expand the set of departments that satisfy this query However this sum query cannot be expressed without the use of aggregates! 31 Non-blocking SQL Vasiliki Kalavri
    0 码力 | 53 页 | 532.37 KB | 1 年前
    3
  • pdf文档 Stream ingestion and pub/sub systems - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    search while MBs only offer topic-based subscription. • DB query results depend on a snapshot and clients are not notified if their query result changes later. 13 Message delivery and ordering Acknowledgements
    0 码力 | 33 页 | 700.14 KB | 1 年前
    3
  • pdf文档 Cardinality and frequency estimation - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    Detect DNS DDoS attacks • Flooding the resources of the targeted system by sending a large number of query from a botnet • Group queries by their top-level domain and investigate most popular domains remove({y, fy}) return X* Computing top-k ??? Vasiliki Kalavri | Boston University 2020 26 • Query approximation error • Error probability Guarantee: The estimation error for frequencies will
    0 码力 | 69 页 | 630.01 KB | 1 年前
    3
  • pdf文档 PyFlink 1.15 Documentation

    specific TableEnvironment. It is not possible to combine tables from different TableEnvironments in same query, e.g., to join or union them. Firstly, you can create a Table from a Python List Object [3]: table Python function in SQL API table_env.create_temporary_function("plus_one", plus_one) table_env.sql_query("SELECT plus_one(id) FROM {}".format(table)).to_pandas() Another example is UDFs used in Row-based
    0 码力 | 36 页 | 266.77 KB | 1 年前
    3
  • pdf文档 PyFlink 1.16 Documentation

    specific TableEnvironment. It is not possible to combine tables from different TableEnvironments in same query, e.g., to join or union them. Firstly, you can create a Table from a Python List Object [3]: table Python function in SQL API table_env.create_temporary_function("plus_one", plus_one) table_env.sql_query("SELECT plus_one(id) FROM {}".format(table)).to_pandas() Another example is UDFs used in Row-based
    0 码力 | 36 页 | 266.80 KB | 1 年前
    3
共 13 条
  • 1
  • 2
前往
页
相关搜索词
StreamingoptimizationsCS591K1DataStreamProcessingandAnalyticsSpring2020FilteringsamplingstreamsFlowcontrolloadsheddingprocessingfundamentalsScalableSparkFlinklanguagesoperatorsemanticsingestionpubsubsystemsCardinalityfrequencyestimationPy1.15Documentation1.16
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩