积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部云计算&大数据(14)Apache Flink(14)

语言

全部英语(13)中文(简体)(1)

格式

全部PDF文档 PDF(14)
 
本次搜索耗时 0.015 秒,为您找到相关结果约 14 个.
  • 全部
  • 云计算&大数据
  • Apache Flink
  • 全部
  • 英语
  • 中文(简体)
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 Flow control and load shedding - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    5 ??? Vasiliki Kalavri | Boston University 2020 Load shedding as an optimization problem N: query network I: set of input streams with known arrival rates C: system processing capacity H: headroom continuously monitors input rates or other system metrics and can access information about the running query plan • It detects overload and decides what actions to take in order to maintain acceptable latency Synopsis for Sr … Fast approximate answers … S1 S2 Sr Input Manager Scheduler QoS Monitor Load Shedder Query Execution Engine Qm Q2 Q1 Ad-hoc or continuous queries Input streams
    0 码力 | 43 页 | 2.42 MB | 1 年前
    3
  • pdf文档 Streaming optimizations - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    University 2020 9 Identify the most efficient way to execute a query • There may exist several ways to execute a computation • query plans, e.g. order of operators • scheduling and placement decisions • How can we estimate the cost of different strategies? • before execution or during runtime Query optimization (I) ??? Vasiliki Kalavri | Boston University 2020 10 Optimization strategies • enumerate • decrease latency, increase throughput • minimize monetary costs (if running in the cloud) Query optimization (II) ??? Vasiliki Kalavri | Boston University 2020 Cost-based optimization 11 Parsed
    0 码力 | 54 页 | 2.83 MB | 1 年前
    3
  • pdf文档 Apache Flink的过去、现在和未来

    Client Dispatcher Job Manager Task Manager Resource Manager Cluster Manager Task Manager 1. Submit job 2. Start job 3. Request slots 4. Allocate Container 5. Start Task Manager 6. Schedule Task YARN Analytics Event-driven Applications ✔ 现在 Flink 1.9 的架构变化 Runtime Distributed Streaming Dataflow Query Processor DAG & StreamOperator Local Single JVM Cloud GCE, EC2 Cluster Standalone, YARN Runtime TopN 高效的 流式去重 完整的 批处理支持 批处理错误恢复(1) 批处理错误恢复(2) 批处理错误恢复(3) 批处理错误恢复(4) 批处理错误恢复(5) 插件化 Shuffle Manager 生态 Flink Hive Flink Zeppelin 中文社区 Flink 的现在 offline Real-time Batch Processing Continuous
    0 码力 | 33 页 | 3.36 MB | 1 年前
    3
  • pdf文档 Filtering and sampling streams - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    • we can store a fixed proportion of the stream, e.g. 1/10th 7 search engine query, timestamp> query stream Example use-case: Web search user behavior study Q: How many queries did users issued n queries in the last month: • s of those are unique • d of those are duplicates • no query was issued more than twice 9 How many of Ted’s queries will be in the 1/10th sample, S? Each of a flag indicating whether they belong to the sample or not • When a query arrives: • if the user is sampled: add the query to S • if we haven’t seen the user before: generate a random integer ru
    0 码力 | 74 页 | 1.06 MB | 1 年前
    3
  • pdf文档 Stream processing fundamentals - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    single-pass Updates arbitrary append-only Update rates relatively low high, bursty Processing Model query-driven / pull-based data-driven / push-based Queries ad-hoc continuous Latency relatively high low • Derived stream: produced by a continuous query and its operators, e.g. total traffic from a source every minute ins_r(P:i) = insert(i, {j | j ∈ ins_r(P) ^ j.A ≠ i.A}). 28 Vasiliki Kalavri | Boston University 2020 Query processing challenges • Memory requirements: we cannot store the whole stream history. • Data rate:
    0 码力 | 45 页 | 1.22 MB | 1 年前
    3
  • pdf文档 Scalable Stream Processing - Spark Streaming and Flink

    engine. ▶ Perform database-like query optimizations. 56 / 79 Programming Model (1/2) ▶ Two main steps to develop a Spark stuctured streaming: ▶ 1. Defines a query on the input table, as a static table table. • Spark automatically converts this batch-like query to a streaming execution plan. ▶ 2. Specify triggers to control when to update the results. • Each time a trigger fires, Spark checks for develop a Spark stuctured streaming: ▶ 1. Defines a query on the input table, as a static table. • Spark automatically converts this batch-like query to a streaming execution plan. ▶ 2. Specify triggers
    0 码力 | 113 页 | 1.22 MB | 1 年前
    3
  • pdf文档 Streaming languages and operator semantics - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    • A Blocking query operator can only return answers when it detects the end of its input. • NOT IN, set difference and division, traditional SQL aggregates • A Non-blocking query operator can produce operator, iff F is monotonic with respect to the partial ordering ⊆. A query Q on a stream S can be implemented by a non-blocking query operator iff Q(S) is monotonic with respect to ⊆. The traditional introduction of a new empl can only expand the set of departments that satisfy this query However this sum query cannot be expressed without the use of aggregates! 31 Non-blocking SQL Vasiliki Kalavri
    0 码力 | 53 页 | 532.37 KB | 1 年前
    3
  • pdf文档 Stream ingestion and pub/sub systems - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    search while MBs only offer topic-based subscription. • DB query results depend on a snapshot and clients are not notified if their query result changes later. 13 Message delivery and ordering Acknowledgements
    0 码力 | 33 页 | 700.14 KB | 1 年前
    3
  • pdf文档 Cardinality and frequency estimation - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    Detect DNS DDoS attacks • Flooding the resources of the targeted system by sending a large number of query from a botnet • Group queries by their top-level domain and investigate most popular domains remove({y, fy}) return X* Computing top-k ??? Vasiliki Kalavri | Boston University 2020 26 • Query approximation error • Error probability Guarantee: The estimation error for frequencies will
    0 码力 | 69 页 | 630.01 KB | 1 年前
    3
  • pdf文档 PyFlink 1.15 Documentation

    specific TableEnvironment. It is not possible to combine tables from different TableEnvironments in same query, e.g., to join or union them. Firstly, you can create a Table from a Python List Object [3]: table Python function in SQL API table_env.create_temporary_function("plus_one", plus_one) table_env.sql_query("SELECT plus_one(id) FROM {}".format(table)).to_pandas() Another example is UDFs used in Row-based
    0 码力 | 36 页 | 266.77 KB | 1 年前
    3
共 14 条
  • 1
  • 2
前往
页
相关搜索词
FlowcontrolandloadsheddingCS591K1DataStreamProcessingAnalyticsSpring2020StreamingoptimizationsApacheFlink过去现在未来FilteringsamplingstreamsprocessingfundamentalsScalableSparklanguagesoperatorsemanticsingestionpubsubsystemsCardinalityfrequencyestimationPy1.15Documentation
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩