积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部云计算&大数据(14)Apache Flink(14)

语言

全部英语(14)

格式

全部PDF文档 PDF(14)
 
本次搜索耗时 0.012 秒,为您找到相关结果约 14 个.
  • 全部
  • 云计算&大数据
  • Apache Flink
  • 全部
  • 英语
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 Skew mitigation - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    Worst case: O( 1 ε * log(εN)) counters ??? Vasiliki Kalavri | Boston University 2020 The power of two choices • Instead, we select d destination bins, each uniformly at random, and place the ball at be expensive • Choose two workers at random and send the item to the least loaded of those two • the system uses two hash functions, H1 and H2 and checks the load of the two sampled workers: P(k) Boston University 2020 The power of both choices • Applying the power of two choices in a streaming setting and preserving key semantics would require remembering the choices made previously • Partial
    0 码力 | 31 页 | 1.47 MB | 1 年前
    3
  • pdf文档 Streaming optimizations - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    ad-hoc database queries, the query plan is generated on- the-fly. Different plans can be used for two consecutive executions of the same query. • A streaming dataflow is generated once and then scheduled B C D A B C D ??? Vasiliki Kalavri | Boston University 2020 B 21 Profitability • Running two applications together on a single core, one with operators B and C, the other with operators B and remove a no-op, e.g. a projection that keeps all attributes • remove idempotent operations, e.g. two selections on the same predicate • remove a dead subgraph, i.e. one that never produces output Redundancy
    0 码力 | 54 页 | 2.83 MB | 1 年前
    3
  • pdf文档 Cardinality and frequency estimation - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    at least one 0: • ********0 (the probability of a 0 is 1/2) • around 25% will end in at least two 0s: • *******00 (1/2 * 1/2) • and so on… 6 ??? Vasiliki Kalavri | Boston University 2020 The around 25% will end in at least two 0s: • *******00 (1/2 * 1/2) • and so on… If one 0 is the maximum we’ve seen, that indicates 2 distinct elements, whereas if two 0s is the maximum we’ve seen, that around 25% will end in at least two 0s: • *******00 (1/2 * 1/2) • and so on… If one 0 is the maximum we’ve seen, that indicates 2 distinct elements, whereas if two 0s is the maximum we’ve seen, that
    0 码力 | 69 页 | 630.01 KB | 1 年前
    3
  • pdf文档 Course introduction - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    Examples • Real-time statistics, e.g. weather maps • Monitor conditions to adjust resources, e.g. power generation • Monitor energy consumption for billing purposes 22 Vasiliki Kalavri | Boston University
    0 码力 | 34 页 | 2.53 MB | 1 年前
    3
  • pdf文档 Scalable Stream Processing - Spark Streaming and Flink

    of the source DStream. ▶ union • Returns a new DStream that contains the union of the elements in two DStreams. 22 / 79 Transformations (3/4) ▶ count • Returns a new DStream of single-element RDDs of the source DStream. ▶ union • Returns a new DStream that contains the union of the elements in two DStreams. 22 / 79 Transformations (4/4) ▶ reduce • Returns a new DStream of single-element RDDs a set of transformations that apply to a over a sliding window of data. ▶ A window is defined by two parameters: window length and slide interval. ▶ A tumbling window effect can be achieved by making
    0 码力 | 113 页 | 1.22 MB | 1 年前
    3
  • pdf文档 Streaming languages and operator semantics - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    Management Operators (I) • Join operators merge two streams by matching elements satisfying a condition • commonly applied on windows • Union operators combine two or more streams without ordering guarantees guarantees • elements have to be of the same type • Difference operators take two streams and output elements present in the first but not in the second • it is blocking and must be defined over a window length k, denoted by Sk . [ ] is the zero-length pre-sequence of S. Partial Order: Let S and L be two sequences. Then, if for some k, Lk = S we say that S is a pre-sequence of L and write S ⊆ L. If
    0 码力 | 53 页 | 532.37 KB | 1 年前
    3
  • pdf文档 Windows and triggers - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    Non-keyed windows are processed in a single thread To create a window operator, you need to specify two window components: • A window assigner determines how the elements of the input stream are grouped Flink’s built-in window assigners create windows of type TimeWindow. : a time interval between the two timestamps, where start is inclusive and end is exclusive. 7 Built-in Window assigners in Flink compute the result from the accumulator and return it. OUT getResult(ACC accumulator); // merge two accumulators and return the result. ACC merge(ACC a, ACC b); } 16 AggregateFunction interface
    0 码力 | 35 页 | 444.84 KB | 1 年前
    3
  • pdf文档 Introduction to Apache Flink and Apache Kafka - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    flatMap( new CoFlatMapFunction[(String, Double), Item, Offer] { // shared state between the two streams val factorValues: HashMap[String, Double] = HashMap.empty // flatMap method for the
    0 码力 | 26 页 | 3.33 MB | 1 年前
    3
  • pdf文档 Fault-tolerance demo & reconfiguration - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    fixed-delay strategy restarts an application a fixed number of times and waits a configured time between two restart attempts. • The failure-rate strategy restarts an application as long as a configurable
    0 码力 | 41 页 | 4.09 MB | 1 年前
    3
  • pdf文档 Graph streaming algorithms - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    Vasiliki Kalavri | Boston University 2020 A graph is bipartite if its vertex set can be divided into two disjoint independent sets U, V, such that every edge connects a vertex in U to a vertex in V (no
    0 码力 | 72 页 | 7.77 MB | 1 年前
    3
共 14 条
  • 1
  • 2
前往
页
相关搜索词
SkewmitigationCS591K1DataStreamProcessingandAnalyticsSpring2020StreamingoptimizationsCardinalityfrequencyestimationCourseintroductionScalableSparkFlinklanguagesoperatorsemanticsWindowstriggersIntroductiontoApacheKafkaFaulttolerancedemoreconfigurationGraphstreamingalgorithms
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩