积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部云计算&大数据(16)Apache Flink(16)

语言

全部英语(15)中文(简体)(1)

格式

全部PDF文档 PDF(16)
 
本次搜索耗时 0.013 秒,为您找到相关结果约 16 个.
  • 全部
  • 云计算&大数据
  • Apache Flink
  • 全部
  • 英语
  • 中文(简体)
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 Streaming languages and operator semantics - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    filtering, projection, renaming. • Logic Operators define rules for complex pattern detection without order constraints. • conjunction of items I1, I2, …, In is satisfied when all items have been detected pre-sequence of S of length k, denoted by Sk . [ ] is the zero-length pre-sequence of S. Partial Order: Let S and L be two sequences. Then, if for some k, Lk = S we say that S is a pre-sequence of L and and write S ⊂ L. 24 Vasiliki Kalavri | Boston University 2020 Given a relation R, ⊆ is a partial order on sequences of tuples from R. Streaming operators take sequences (streams) as input and return
    0 码力 | 53 页 | 532.37 KB | 1 年前
    3
  • pdf文档 Stream processing fundamentals - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    timestamp. • They are produced by external sources, i.e. the DSMS has no control over their arrival order or the data rate. • They have unknown, possibly unbounded length, i.e. the DSMS does not know without storing them 2. Support a high-level language (e.g. StreamSQL) 3. Handle missing, out-of-order, delayed data 4. Guarantee deterministic (on replay) and correct results (on recovery) 5. Combine University 2020 Time-Series Model: The jth update is (j, A[j]) and updates arrive in increasing order of j, i.e. we observe the entries of A by increasing index. This can model time-series data streams:
    0 码力 | 45 页 | 1.22 MB | 1 年前
    3
  • pdf文档 Filtering and sampling streams - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    an expected number of elements and a fixed memory budget, how many hash functions do we need in order to minimize Pfp? Optimal number of hash functions 1 0 1 1 1 0 0 1 1 1 1 0 1 1 n bits h1 h2 hk an expected number of elements and a fixed memory budget, how many hash functions do we need in order to minimize Pfp? Optimal number of hash functions After m elements have been inserted to the filter an expected number of elements and a fixed memory budget, how many hash functions do we need in order to minimize Pfp? Optimal number of hash functions After m elements have been inserted to the filter
    0 码力 | 74 页 | 1.06 MB | 1 年前
    3
  • pdf文档 Notions of time and progress - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    update Vasiliki Kalavri | Boston University 2020 1. Watermarks must be monotonically increasing in order to ensure that the event time clocks of tasks are progressing and not going backwards. 2. A watermark University 2020 Watermarks are essential to both event-time windows and operators handling out-of-order events: • When an operator receives a watermark with time T, it can assume that no further events events with timestamp less than T will be received. • It can then either trigger computation or order received events. 15 Evaluation of event-time windows Vasiliki Kalavri | Boston University 2020
    0 码力 | 22 页 | 2.22 MB | 1 年前
    3
  • pdf文档 Stream ingestion and pub/sub systems - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    processors read data from? 2 Challenges • can be distributed • out-of-sync sources may produce out-of-order streams • can be connected to the network • latency and unpredictable delays • might be producing only once, by a single consumer • Event retrieval is not defined by content / structure but its order • FIFO, priority producer consumer queue 6 Message brokers Message broker: a system that connects Re-delivery complicates stream processing and fault-tolerance • might process a message out-of-order or twice 14 How can we avoid this? 15 Publish/Subscribe Systems publisher publisher publisher
    0 码力 | 33 页 | 700.14 KB | 1 年前
    3
  • pdf文档 Course introduction - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    23, 8, 0, 7] 5 median ‣ We cannot store the entire stream ‣ No control over arrival rate or order f’ ∞ ? Continuously arriving, possibly unbounded data f read write Complete data accessible 31 Vasiliki Kalavri | Boston University 2020 Some hard problems in stream processing 32 Time Order Processing guarantees Progress Retractions & results amendment Reconfiguration & updates Debugging
    0 码力 | 34 页 | 2.53 MB | 1 年前
    3
  • pdf文档 Introduction to Apache Flink and Apache Kafka - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    Guarantees • Messages sent by a producer to a particular topic partition will be appended in the order they are sent: • if a record M1 is sent by the same producer as a record M2, and M1 is sent first a lower offset than M2 and appear earlier in the log. • A consumer instance sees records in the order they are stored in the log. • For a topic with replication factor N, we will tolerate up to N-1
    0 码力 | 26 页 | 3.33 MB | 1 年前
    3
  • pdf文档 Streaming in Apache Flink

    Dataflows Let's Talk About Time • Processing Time • Event Time • Events may arrive out of order! What Can Be Streamed? • Anything (if you write a serializer/deserializer for it) • Flink has setStreamTimeCharacteristic(TimeCharacteristic.EventTime); Watermarks • Data may arrive out of order • Sorting data is expensive and may not always be required • Watermark is a good heuristic to
    0 码力 | 45 页 | 3.00 MB | 1 年前
    3
  • pdf文档 High-availability, recovery semantics, and guarantees - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    primary secondary I1 I2 O1 O2 N’i I’1 I’2 O’1 O’2 • The communication network ensures order-preserving, reliable message transport, e.g. TCP. • Failures are single-node and fail- stop, i t3 t’2 t’3 t’4 … The output semantics depend on the operator type: • arbitrary: it depends on order, randomness, or external system • deterministic: it produces the same output when starting from
    0 码力 | 49 页 | 2.08 MB | 1 年前
    3
  • pdf文档 Streaming optimizations - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    to execute a query • There may exist several ways to execute a computation • query plans, e.g. order of operators • scheduling and placement decisions • different algorithms, e.g. hash-based vs. attribute • Ensure ordering constraints: if downstream operator expects elements in a particular order, merging should handle that • Avoid deadlocks: if split cannot push data because one channel is
    0 码力 | 54 页 | 2.83 MB | 1 年前
    3
共 16 条
  • 1
  • 2
前往
页
相关搜索词
StreaminglanguagesandoperatorsemanticsCS591K1DataStreamProcessingAnalyticsSpring2020processingfundamentalsFilteringsamplingstreamsNotionsoftimeprogressingestionpubsubsystemsCourseintroductionIntroductiontoApacheFlinkKafkainHighavailabilityrecoveryguaranteesoptimizations
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩