积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部云计算&大数据(13)Apache Flink(13)

语言

全部英语(12)中文(简体)(1)

格式

全部PDF文档 PDF(13)
 
本次搜索耗时 0.014 秒,为您找到相关结果约 13 个.
  • 全部
  • 云计算&大数据
  • Apache Flink
  • 全部
  • 英语
  • 中文(简体)
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 Elasticity and state migration: Part I - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    processes or release unused resources, safely terminate processes • Adjust dataflow channels and network connections • Re-partition and migrate state in a consistent manner • Block and unblock computations scaling controller detect symptoms decide whether to scale decide how much to scale metrics policy scaling action ??? Vasiliki Kalavri | Boston University 2020 Automatic scaling requirements 7 scaling controller detect symptoms decide whether to scale decide how much to scale metrics policy scaling action ??? Vasiliki Kalavri | Boston University 2020 Scaling approaches Metrics • service
    0 码力 | 93 页 | 2.42 MB | 1 年前
    3
  • pdf文档 PyFlink 1.15 Documentation

    for_row_format('/tmp/sink', Encoder.simple_string_encoder("UTF-8")) .with_rolling_policy(RollingPolicy.default_rolling_policy( part_size=1024 ** 3, rollover_interval=15 * 60 * 1000, inactivity_interval=5 *␣
    0 码力 | 36 页 | 266.77 KB | 1 年前
    3
  • pdf文档 PyFlink 1.16 Documentation

    for_row_format('/tmp/sink', Encoder.simple_string_encoder("UTF-8")) .with_rolling_policy(RollingPolicy.default_rolling_policy( part_size=1024 ** 3, rollover_interval=15 * 60 * 1000, inactivity_interval=5 *␣
    0 码力 | 36 页 | 266.80 KB | 1 年前
    3
  • pdf文档 Introduction to Apache Flink and Apache Kafka - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    records within a partition. It uniquely identifies records within each partition. The retention policy defines a time period after a record is published that it is available for consumption. Records
    0 码力 | 26 页 | 3.33 MB | 1 年前
    3
  • pdf文档 Flow control and load shedding - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    ? Vasiliki Kalavri | Boston University 2020 Load shedding as an optimization problem N: query network I: set of input streams with known arrival rates C: system processing capacity H: headroom Load(N(I)): the load as a fraction of the total capacity C that network N(I) presents Uacc: the aggregate utility 6 Find a new network N' such that Load(N’(I))< H x C and Uacc(N(I)) - Uacc(N'I)) University 2020 Backpressure 20 ??? Vasiliki Kalavri | Boston University 2020 Rate control • In a network of consumers and producers such as a streaming execution graph with multiple operators, back-pressure
    0 码力 | 43 页 | 2.42 MB | 1 年前
    3
  • pdf文档 Stream ingestion and pub/sub systems - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    distributed • out-of-sync sources may produce out-of-order streams • can be connected to the network • latency and unpredictable delays • might be producing too fast • stream processor needs to implement triggers? • Direct messaging • Direct network communication, UDP multicast, TCP • HTTP or RPC if the consumer exposes a service on the network • Failure handling: application needs to be aware Cloud Pub/Sub Publishers and Subscribers are applications. 23 Use-cases • Balancing workloads in network clusters • tasks can be efficiently distributed among multiple workers, such as Google Compute
    0 码力 | 33 页 | 700.14 KB | 1 年前
    3
  • pdf文档 Fault-tolerance demo & reconfiguration - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    processes or release unused resources, safely terminate processes • Adjust dataflow channels and network connections • Re-partition and migrate state in a consistent manner • Block and unblock computations processes or release unused resources, safely terminate processes • Adjust dataflow channels and network connections • Re-partition and migrate state in a consistent manner • Block and unblock computations processes or release unused resources, safely terminate processes • Adjust dataflow channels and network connections • Re-partition and migrate state in a consistent manner • Block and unblock computations
    0 码力 | 41 页 | 4.09 MB | 1 年前
    3
  • pdf文档 监控Apache Flink应用程序(入门)

    functional reasons. 4. Each computation in your Flink topology (framework or user code), as well as each network shuffle, takes time and adds to latency. 5. If the application emits through a transactional sink 7 7 https://ci.apache.org/projects/flink/flink-docs-release-1.7/ops/config.html#configuring-the-network-buffers 8 https://www.da-platform.com/blog/manage-rocksdb-memory-size-apache-flink? __hstc=216506377 to 250 megabyte by default • The biggest driver of Direct memory is by far the number of Flink’s network buffers, which can be configured7. • Mapped memory is usually close to zero as Flink does not
    0 码力 | 23 页 | 148.62 KB | 1 年前
    3
  • pdf文档 Streaming optimizations - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    would you compute… ??? Vasiliki Kalavri | Boston University 2020 51 • TaskManagers have a pool of network buffers to send and receive data. • If the sender and receiver run in separate processes, they task serializes the outgoing records into a byte buffer. • A TaskManager needs one dedicated network buffer for each receiving task that any of its tasks need to send data to. Batching in Apache Apache Flink • The TaskManagers ship data from sending tasks to receiving tasks. • The network component of a TaskManager collects records in buffers before they are shipped, i.e., records are not shipped
    0 码力 | 54 页 | 2.83 MB | 1 年前
    3
  • pdf文档 High-availability, recovery semantics, and guarantees - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    I’2 O’1 O’2 • The communication network ensures order-preserving, reliable message transport, e.g. TCP. • Failures are single-node and fail- stop, i.e. no network partitions or multiple simultaneous
    0 码力 | 49 页 | 2.08 MB | 1 年前
    3
共 13 条
  • 1
  • 2
前往
页
相关搜索词
ElasticityandstatemigrationPartCS591K1DataStreamProcessingAnalyticsSpring2020PyFlink1.15Documentation1.16IntroductiontoApacheKafkaFlowcontrolloadsheddingingestionpubsubsystemsFaulttolerancedemoreconfiguration监控应用程序应用程序入门StreamingoptimizationsHighavailabilityrecoverysemanticsguarantees
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩