监控Apache Flink应用程序(入门)
..................................................................................... 14 4.12 Monitoring Latency....................................................................................... ............ 23 caolei – 监控Apache Flink应用程序(入门) – 4 原文地址:https://www.ververica.com/blog/monitoring-apache-flink-applications-101 这篇博文介绍了Apache Flink内置的监控和度量系统,通过该系统,开发人员可以有效地监控他们的Flink作 业。通常,对于一个刚刚开始使用Apache org/projects/flink/flink-docs-release-1.7/monitoring/metrics.html#registering-metrics 2 https://ci.apache.org/projects/flink/flink-docs-release-1.7/monitoring/metrics.html#reporter Flink指标体系 – 5 1 Flink指标体系0 码力 | 23 页 | 148.62 KB | 1 年前3Course introduction - CS 591 K1: Data Stream Processing and Analytics Spring 2020
Vasiliki Kalavri | Boston University 2020 Grading Scheme (2) Final Project (50%): • A real-time monitoring and anomaly detection framework • To be implemented individually Deliverables • One (1) written Boston University 2020 Final Project You will use Apache Flink and Kafka to build a real-time monitoring and anomaly detection framework for datacenters. Your framework will: • Detect “suspicious” Online recommendations Vasiliki Kalavri | Boston University 2020 Sensor measurements analysis • Monitoring applications • Complex filtering and alarm activation • Aggregation of multiple sensors and joins0 码力 | 34 页 | 2.53 MB | 1 年前3Stream processing fundamentals - CS 591 K1: Data Stream Processing and Analytics Spring 2020
the jth update (k, c[j]), it must hold that c[j] ≥ 0. This can model insertion-only streams: • monitoring the total packets exchanged between two IP addresses • the collection of IP addresses accessing continuously inserted and deleted from the stream. It can model fully dynamic situations: • Monitoring active IP network connections is a Turnstile stream, as connections can be initiated or terminated0 码力 | 45 页 | 1.22 MB | 1 年前3Stream ingestion and pub/sub systems - CS 591 K1: Data Stream Processing and Analytics Spring 2020
changed. • Logging to multiple systems • a Google Compute Engine instance can write logs to the monitoring system, to a database for later querying, and so on. • Data streaming from various processes0 码力 | 33 页 | 700.14 KB | 1 年前3Fault-tolerance demo & reconfiguration - CS 591 K1: Data Stream Processing and Analytics Spring 2020
load imbalance • Resource management • utilization, isolation • Automation • continuous monitoring • bottleneck detection • stability, accuracy 11 Challenges of reconfiguration ??? Vasiliki0 码力 | 41 页 | 4.09 MB | 1 年前3PyFlink 1.15 Documentation
QuickStart: DataStream API . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 1.2 User Guide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 execute() [8]:1.2 User Guide 1.2.1 RealTime Feature 1.2.1.1 Coming Soon. 1.2.2 PyFlink + Flink ML 1.2.2.1 Coming Soon. 1.3 0 码力 | 36 页 | 266.77 KB | 1 年前3PyFlink 1.16 Documentation
QuickStart: DataStream API . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 1.2 User Guide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 execute() [8]:1.2 User Guide 1.2.1 RealTime Feature 1.2.1.1 Coming Soon. 1.2.2 PyFlink + Flink ML 1.2.2.1 Coming Soon. 1.3 0 码力 | 36 页 | 266.80 KB | 1 年前3Scalable Stream Processing - Spark Streaming and Flink
Asynchronous barriers 76 / 79 Summary 77 / 79 References ▶ M. Zaharia et al., “Spark: The Definitive Guide”, O’Reilly Media, 2018 - Chapters 20-23. ▶ M. Zaharia et al., “Discretized Streams: An Efficient0 码力 | 113 页 | 1.22 MB | 1 年前3
共 8 条
- 1