积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部云计算&大数据(5)Apache Flink(5)

语言

全部英语(4)中文(简体)(1)

格式

全部PDF文档 PDF(5)
 
本次搜索耗时 0.009 秒,为您找到相关结果约 5 个.
  • 全部
  • 云计算&大数据
  • Apache Flink
  • 全部
  • 英语
  • 中文(简体)
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 Stream ingestion and pub/sub systems - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    Indirectly • Producer writes to a file or database • Consumer periodically polls and retrieves new data • polling overhead, latency? • Consumer receives a notification when new data is available • Direct messaging • Direct network communication, UDP multicast, TCP • HTTP or RPC if the consumer exposes a service on the network • Failure handling: application needs to be aware of message loss message is processed only once, by a single consumer • Event retrieval is not defined by content / structure but its order • FIFO, priority producer consumer queue 6 Message brokers Message broker:
    0 码力 | 33 页 | 700.14 KB | 1 年前
    3
  • pdf文档 Introduction to Apache Flink and Apache Kafka - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    key, a value, and a timestamp. A producer publishes a stream of records to a Kafka topic and a consumer subscribes to one or more topics and processes the stream of records published in them. Topics label themselves with a consumer group name, and each record published to a topic is delivered to one consumer instance within each subscribing consumer group. Consumer instances can be in separate all the consumer instances have the same consumer group, then the records will effectively be load balanced over the consumer instances. If all the consumer instances have different consumer groups
    0 码力 | 26 页 | 3.33 MB | 1 年前
    3
  • pdf文档 Flow control and load shedding - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    back-pressure has the effect that all operators slow down to match the processing speed of the slowest consumer. • If the bottleneck operator is far down the dataflow graph, back-pressure propagates to upstream exchange: If both producer and consumer run on the same node the buffer is recycled as soon as it is consumed. • The producer slows down according to the rate the consumer recycles buffers. Remote the buffer can be recycled as soon as it is on the TCP channel. • If there is no buffer on the consumer side, reading from the TCP connection is interrupted. • The producer uses a threshold to control
    0 码力 | 43 页 | 2.42 MB | 1 年前
    3
  • pdf文档 监控Apache Flink应用程序(入门)

    best indication that the consumer group is not keeping up with the producers. millisBehindLatest user applies to FlinkKinesisConsumer The number of milliseconds a consumer is behind the head of of the stream. For any consumer and Kinesis shard, this indicates how far it is behind the current time. 4.11 可能的报警条件 • records-lag-max > threshold • millisBehindLatest > threshold 4.12 Monitoring
    0 码力 | 23 页 | 148.62 KB | 1 年前
    3
  • pdf文档 Scalable Stream Processing - Spark Streaming and Flink

    Kinesis, ... TwitterUtils.createStream(ssc, None) KafkaUtils.createStream(ssc, [ZK quorum], [consumer group id], [number of partitions]) 15 / 79 Input Operations - Custom Sources (1/3) ▶ To create
    0 码力 | 113 页 | 1.22 MB | 1 年前
    3
共 5 条
  • 1
前往
页
相关搜索词
StreamingestionandpubsubsystemsCS591K1DataProcessingAnalyticsSpring2020IntroductiontoApacheFlinkKafkaFlowcontrolloadshedding监控应用程序应用程序入门ScalableSparkStreaming
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩