Flink如何实时分析Iceberg数据湖的CDC数据1NS/RT(1,2 UPDAT/{(1,2 )*(1,3 I 1NS/RT(3,5 D/2/T/(1,3 1NS/RT(2,5 1 (3,5 1 (2,5 S/2/CT * FR53 D;ABl=( 1NS/RT D/2/T/ d;E; >il=1 d;E; >il=1 d;E; >il=1 d;E; >il=1 d;E; >il=1 d;E; >il=1 =CF;liEy N1E02 (1,( 53t3 file1 53t3 file1 (file2, 0 positio; 5elete file1 , (1,3 , (1,4 , (1,3 , (1,4 , (1,( 53t3 file2 , (1,2 DE-E2E (1,( 53t3 file1 , (1,3 , (1,4 , (1,( 53t3 file2 , (1,2 DE-E2E (1,4 53t3 file1 , (1,3 , (1,4 (file2, 0 , (1,( 53t3 file2 positio; 5elete file1 (1, 4 equ3lity 5elete file1 方e:2iIed CoF-delete aAd eDualitJ-delete I (1,2 S-1-CT * FR420 码力 | 36 页 | 781.69 KB | 1 年前3
Exactly-once fault-tolerance in Apache Flink - CS 591 K1: Data Stream Processing and Analytics Spring 2020University 2020 Snapshotting Protocols p1 p2 p3 mAB53icbVBNS8NAEJ34WetX1aOXxSJ4Kok I6q3oxWMLxhbaUDbSbt2swm7G6GE/gIvHlS8+pe8+W/ctjlo64OBx3szMwLU8G1cd1vZ2 Wp QoFGr/LV7Scsi1EaJqjWHc9NTZBTZTgTOCl3M40pZSM6wI6lksaog3x26IScWqVPokTZkobM1N8TOY21Hseh7YypGepFbyr+53UyE10FOZdpZlCy+aIoE8QkZPo16XOFzIixJZQpbm8lbEgVZcZmU7YheIsvLxP/vHZd85oX1fpNk UYJjuEzsCDS6jDHTABwYIz/ AKb86j8+K8Ox/z1hWnmDmCP3A+fwBD/ozF AB53icbVBNS8NAEJ34WetX1aOXxSJ4Kok I6q3oxWMLxhbaUDbSbt2swm7G6GE/gIvHlS8+pe8+W/ctjlo64OBx3szMwLU8G1cd1vZ2V 0 码力 | 81 页 | 13.18 MB | 1 年前3
Scalable Stream Processing - Spark Streaming and FlinkInput: key = b, value = Some(1), state = 0 • Output: key = a, sum = 2 • Output: key = b, sum = 1 53 / 79 updateStateByKey vs. mapWithState Example (2/3) ▶ The second micro batch contains messages a Input: key = b, value = Some(1), state = 0 • Output: key = a, sum = 2 • Output: key = b, sum = 1 53 / 79 updateStateByKey vs. mapWithState Example (2/3) ▶ The second micro batch contains messages a Input: key = b, value = Some(1), state = 0 • Output: key = a, sum = 2 • Output: key = b, sum = 1 53 / 79 updateStateByKey vs. mapWithState Example (3/3) ▶ The third micro batch contains a message b0 码力 | 113 页 | 1.22 MB | 1 年前3
Graph streaming algorithms - CS 591 K1: Data Stream Processing and Analytics Spring 2020? Vasiliki Kalavri | Boston University 2020 8 4 1 7 4 8 7 8 4 5 4 6 5 3 2 4 3 6 3 1 4 53 k=3 7 d(1, 4) = 1 d(4, 7) = 1 d(7, 8) = 1 d(4, 8) = d(4, 7) + d(7, 8) = 2 < 3 ?0 码力 | 72 页 | 7.77 MB | 1 年前3
Streaming optimizations - CS 591 K1: Data Stream Processing and Analytics Spring 2020| Boston University 2020 Interacting optimizations ??? Vasiliki Kalavri | Boston University 2020 53 • Martin Hirzel et. al. A Catalog of Stream Processing Optimizations. (ACM Computing Surveys 2014)0 码力 | 54 页 | 2.83 MB | 1 年前3
Streaming languages and operator semantics - CS 591 K1: Data Stream Processing and Analytics Spring 2020Proceedings of the Thirtieth international conference on Very large data bases - Volume 30 (VLDB ’04). 530 码力 | 53 页 | 532.37 KB | 1 年前3
共 6 条
- 1













