PyFlink 1.15 Documentationorg.apache.flink.table.planner.plan.nodes.exec.common.CommonExecSink. ˓→createSinkFunctionTransformation(CommonExecSink.java:331) at org.apache.flink.table.planner.plan.nodes.exec.common.CommonExecSink at org.apache.flink.table.planner.plan.nodes.exec.common.CommonExecSink. ˓→createSinkTransformation(CommonExecSink.java:146) at org.apache.flink.table.planner.plan.nodes.exec.stream.StreamExecSink. ˓→translateToPlanInternal(StreamExecSink.java:140) at org.apache.flink.table.planner.plan.nodes.exec.ExecNodeBase. ˓→translateToPlan(ExecNodeBase.java:134) This is an issue around Java 17. It still0 码力 | 36 页 | 266.77 KB | 1 年前3
 PyFlink 1.16 Documentationorg.apache.flink.table.planner.plan.nodes.exec.common.CommonExecSink. ˓→createSinkFunctionTransformation(CommonExecSink.java:331) at org.apache.flink.table.planner.plan.nodes.exec.common.CommonExecSink at org.apache.flink.table.planner.plan.nodes.exec.common.CommonExecSink. ˓→createSinkTransformation(CommonExecSink.java:146) at org.apache.flink.table.planner.plan.nodes.exec.stream.StreamExecSink. ˓→translateToPlanInternal(StreamExecSink.java:140) at org.apache.flink.table.planner.plan.nodes.exec.ExecNodeBase. ˓→translateToPlan(ExecNodeBase.java:134) This is an issue around Java 17. It still0 码力 | 36 页 | 266.80 KB | 1 年前3
 Flow control and load shedding - CS 591 K1: Data Stream Processing and Analytics Spring 2020monitors input rates or other system metrics and can access information about the running query plan • It detects overload and decides what actions to take in order to maintain acceptable latency • detect overload quickly to avoid latency increase • monitor input rates • Where in the query plan? • dropping at the sources vs. dropping at bottleneck operators • How much load to shed? • enough Where in the query plan to drop tuples, which tuples, and how many • The question of where is equivalent to placing special drop operators in the best positions in the query plan • Drop operators0 码力 | 43 页 | 2.42 MB | 1 年前3
 Streaming optimizations	- CS 591 K1: Data Stream Processing and Analytics Spring 2020of streaming operator execution • state, parallelism, selectivity • Dataflow optimizations • plan translation alternatives • Runtime optimizations • load management, scheduling, state management optimization 11 Parsed program representation Optimizer statistics input plan A plan B output Lowest-cost plan ??? Vasiliki Kalavri | Boston University 2020 12 • What does efficient mean in queries run continuously • streams are unbounded • In traditional ad-hoc database queries, the query plan is generated on- the-fly. Different plans can be used for two consecutive executions of the same0 码力 | 54 页 | 2.83 MB | 1 年前3
 Scalable Stream Processing - Spark Streaming and Flinkas a static table. • Spark automatically converts this batch-like query to a streaming execution plan. ▶ 2. Specify triggers to control when to update the results. • Each time a trigger fires, Spark as a static table. • Spark automatically converts this batch-like query to a streaming execution plan. ▶ 2. Specify triggers to control when to update the results. • Each time a trigger fires, Spark as a static table. • Spark automatically converts this batch-like query to a streaming execution plan. ▶ 2. Specify triggers to control when to update the results. • Each time a trigger fires, Spark0 码力 | 113 页 | 1.22 MB | 1 年前3
 Fault-tolerance demo & reconfiguration - CS 591 K1: Data Stream Processing and Analytics Spring 2020increased load • scale in to save resources • Fix bugs or change business logic • Optimize execution plan • Change operator placement • skew and straggler mitigation • Migrate to a different cluster0 码力 | 41 页 | 4.09 MB | 1 年前3
 Stream processing fundamentals - CS 591 K1: Data Stream Processing and Analytics Spring 2020Twitter source Extract hashtags Count topics Trends sink w1 w2 w3 w4 w5 w6 w7 w8 Logic Query Plan Deployment 39 Vasiliki Kalavri | Boston University 2020 source sink input port output port dataflow0 码力 | 45 页 | 1.22 MB | 1 年前3
共 7 条
- 1
 













