积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部数据库(12)Greenplum(12)

语言

全部中文(简体)(12)

格式

全部PDF文档 PDF(12)
 
本次搜索耗时 0.033 秒,为您找到相关结果约 12 个.
  • 全部
  • 数据库
  • Greenplum
  • 全部
  • 中文(简体)
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 并行不悖- OLAP 在互联网公司的实践与思考

    以对账业务为主,统计计算为辅 • 公司IDC_02机房Greenplum体系 Ø 针对数据来源主要是kfk产生csv文件的业务,不直接从数据库传数 Ø 以重点业务线、活动数据、非OLTP业务数据的任务计算为主 • 公司IDC_03机房Greenplum体系 Ø 数据来源来源为OTLP库库,针对大数据量传输和计算,采用T+1方式 Ø 以核心业务的数据计算、统计为主 18 Greenplum现状说明 Greenplum运维体系 数据库数据传输与同步-db_sync 31 Greenplum运维体系 Greenplum任务调度 • greenplum内部存储过程调度 Ø大批量任务采用 kettle调度 Ø单个存储过程,可以在shell中 select func_name() 的方式调度 • 外部任务调度 Ø将整个过程封装成shell脚本,或 Python脚本 Ø用crontab在操作系统调用脚本 Ø用 Greenplum任务调度-opencron 33 Greenplum现状说明 三 Greenplum体系架构 二 数据仓库体系架构 一 Greenplum开发规范 五 Greenplum运维体系 四 Greenplum扩展规划 六 34 Greenplum开发规范 不规范容易出现的问题 • GP架构易出现问题 Ø 资源不足 Ø 连接、语句执行失败 Ø 多任务冲突 • 库表使用易出现问题
    0 码力 | 43 页 | 9.66 MB | 1 年前
    3
  • pdf文档 Greenplum 精粹文集

    实例的高效协同和并行计算,Interconnect 承载了并行 查询计划生产和 Dispatch 分发(QD)、协调节点上 QE 执行器的并 行工作、负责数据分布、Pipeline 计算、镜像复制、健康探测等等诸 多任务。 在 Greenplum 开源以前,据说一些厂商也有开发 MPP 数据库的打算, 其中最难的部分就是在 Interconnect 上遇到了障碍,可见这项技术的 关键性。 Greenplum 集群架构 CPU CORE 的计算能力,对 X86 的 CPU 超线程有很好的支持,提供更好的请求响应速度。在 PoC 中接触 到其它一些国内外基于开放平台的 MPP 软件,大都是建立在节点级的 并行,单个或少量的任务时无法充分利用资源,导致系统加载和 SQL 执行性能不高。 记忆较深的一次 PoC 公开测试中,有厂商要求在测试中关闭 CPU 超 线程,估计和这个原因有关(因为没有办法利用到多个 CPU core 有 问 题,Greenplum 采 用 Master-slave 架 构, Master 是否会成为瓶颈?完全不用担心,Greenplum 所有的并行任务 都是在 Segment 数据节点上完成后,Master 只负责生成和优化查询 计划、派发任务、协调数据节点进行并行计算。 按照我们在用户现场观察到的,Master 上的资源消耗很少有超过 20% 情况发生,因为 Segment 才是计算和加载发生的场所(当然,
    0 码力 | 64 页 | 2.73 MB | 1 年前
    3
  • pdf文档 Greenplum Database 管理员指南 6.2.1

    公司商业运营,在 2020 年,Pivotal 被兄弟公司 VMWare 收购,由 VMWare 继续运营。近年来,Greenplum 在国内建立了一个较大规模的研发团队,越来越多的承担更重要的研发任务,包括 PostgreSQL 的版本合并等,从而,可以为国内商业用户提供更专业和更优质的本地 化服务,用户遇到问题,反馈给专业技术支持人员,或者专业售后服务团队,他们会同 用户一起排查和解决问题,如 脚本的形式实现了 Master 和 Standby 的自动 FailOver 效果,编者也实现了自动 切换命令,当 Master 出现无法正常工作的故障时,自动激活 Standby 来接管 Master 的任务。下面的流程图,是编者实现的 Master 和 Standby 自动切换的逻辑流程图, 可以供读者参考,不过,编者不方便公开实现的代码。 Greenplum Database 管理员指南 V6.2 Primary,这个数字的选择需要由富有经验的专业技术支持人员进行评估, 每个 Instance 所在主机配置的 Primary 越多,响应并发的能力越弱,但单个任务的 处理能力越强(这也不是绝对的,当 Primary 数量多到,即便运行单个任务时都会出 现资源争抢,可能运行的效率就会下降)。实际上,每个计算主机的 Primary 个数, 还与其他资源有关,如,磁盘性能,网络性能,内存容量。
    0 码力 | 416 页 | 6.08 MB | 1 年前
    3
  • pdf文档 Pivotal Greenplum 最佳实践分享

    IO是否繁忙,Wait是否较高 – 是单一服务器繁忙还是所有服务器繁忙  检查数据库狀态 – gpstate检查是否有实例down机 – 检查pg_log是否有OOM錯誤  检查当前SQL任务 – 确定当前系統是否有SQL能执行成功(checkpoint、select用户表),还是整個系统挂起 – 确定是否有锁等待或资源队列排队导致SQL长时间不能完成 – 确定是否整体性能慢 检查文件系统是否有异常(到相应实例对应的数据目录下,执行ls;echo“test‖ > mytest.txt看看是否有错误) 问题定位方法 现象-某个SQL任务执行时间太长  检查SQL是否在资源队列中排队(select * from pg_stat_activity),是否已经dispatch(cat pg_log/gpdb-yyyy-mm-dd_xxxxxxx 按照模式、表清单备份、可排除部分表、可排除全部外部表的Error表  有详细日志、自劢生成成功失败清单、可断点续跑[到表级]  可指定条件筛选数据进行备份  单个失败不影响整个备份任务  可增量备份-识别AO的方式与gpcrondump一致,同时支持heap表的增备(是否发生过变化)  可指定并发数(同时多张表备份),可指定编码Encoding  乐观锁设计——单表尝试加锁失败即认为该表本次备份失败
    0 码力 | 41 页 | 1.42 MB | 1 年前
    3
  • pdf文档 Greenplum 新一代数据管理和数据分析解决方案

    商用硬件集群 分析 数据 市场 企业数 据仓库 企业数据集合:主要的优势 • 实体整合 • 提高服务器使用率 • 降低总硬件成本 • 降低能量成本 • 可以预估的服务等级 • 确保关键任务的可靠性 • 最出色的性能 • 高度灵活性 • 逐步扩展计算能力 • 动态措施 • 数据访问: • 在一个系统中协调所有企业数据的位置 • 可以通过任何语言(SQL、M/R等)进行分析 14 描,历时超过20分钟。 结论:如果采用DWA替代现有环境,获得超过120倍的性能提升。 • 真实应用测试 – DWA测试结果:完成应用的全过程仅耗时48分钟。 – 客户投产环境:客户11月份月度处理时,完成本项任务需要65小时。 结论:如果采用DWA替代现有环境,获得超过80倍的性能提升。 案例分享:阿里巴巴 • 业务用例 • 通过分析用户的网络点击日志,进行产品关联分析,让客户可以 快速的找到相近产品
    0 码力 | 45 页 | 2.07 MB | 1 年前
    3
  • pdf文档 Greenplum 编译安装和调试

    查询计划包含2个slices,所以每个 segment 会启动 2 个 QE(Query Executor),一个 QE 负责 执行一个 slice 对应的任务。 同一个 slice 在每个 segment 的 QE形成一个 Gang,它们在不同的segment上执行相同的任务。 HashJoin 需要相同关联键的所有数据都在一个 segment 上,因而如果关联键不是分布键,则需 要数据移动。在这个例子中classes
    0 码力 | 15 页 | 2.07 MB | 1 年前
    3
  • pdf文档 Greenplum on Kubernetes 容器化MPP数据库

    NFS, Cinder, VsphereVolume ● PersistentVolumeClaim ○ 申请存储资源 Kubernetes 计算资源 Pod ● Pod ○ 计算任务 → 容器 → Pod ○ 资源分配:CPU,内存,磁盘 ○ 资源调度:Pod → Node ● Pod管理 ○ 无状态计算资源组:Deployment ○ 有状态计算资源组:StatefulSet
    0 码力 | 33 页 | 1.93 MB | 1 年前
    3
  • pdf文档 Greenplum开源MPP数据库介绍

    Confidential │ ©2022 VMware, Inc. 19 GPCC Greenplum Command Center Ø Web UI 监控和管理 Ø 实时性能监控 Ø 可视化计划 Ø 基于规则的任务管理 Ø 向客户推荐性能优化操作 Ø 报警和通知 Confidential │ ©2022 VMware, Inc. 20 Greenplum Streaming Server Ø ETL工具
    0 码力 | 23 页 | 4.55 MB | 1 年前
    3
  • pdf文档 Pivotal HVR meetup 20190816

    连续数据集成技术 Migrations Disaster Recovery 6 扩展性—高性能架构 7 • 创建并装载目标表 • 用于实时复制的初始化 • 也可以单独使用 • 可以被定义为任务,定时调度执行 异构平台环境下初始化同步 8 • 非侵入式技术对生产没有影响 • 基于日志捕获技术的实时性非常高 • 支持从过去的某一指定时间开始捕获 • 条件过滤 • 支持触发器捕获技术作为补充
    0 码力 | 31 页 | 2.19 MB | 1 年前
    3
  • pdf文档 Greenplum数据库架构分析及5.x新功能分享

    多态存储系统 客户端访问 ODBC, JDBC, OLEDB, etc. 核心MPP 架构 并行数据流引擎 高速软数据交换机制 MPP Scatter/Gather 流处理 在线系统扩展 任务管理 服务 加载 & 数据联邦 高速数据加载 近实时数据加载 任意系统数据访问 存储 & 数据访问 混合存储引擎(行存&列存) 多种压缩,多级分区表 索引(B树,位图,GiST) 安全性
    0 码力 | 44 页 | 8.35 MB | 1 年前
    3
共 12 条
  • 1
  • 2
前往
页
相关搜索词
并行并行不悖OLAP互联联网互联网公司实践思考Greenplum精粹文集Database管理管理员指南Pivotal最佳分享一代新一代数据数据管理分析数据分析解决方案解决方案编译安装调试onKubernetes容器MPP据库数据库开源介绍HVRmeetup20190816架构功能
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩