积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部数据库(30)TiDB(30)

语言

全部英语(16)中文(简体)(14)

格式

全部PDF文档 PDF(30)
 
本次搜索耗时 1.232 秒,为您找到相关结果约 30 个.
  • 全部
  • 数据库
  • TiDB
  • 全部
  • 英语
  • 中文(简体)
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 TiDB v5.4 Documentation

    provide service �→ normally. backend = "local" ### Set the temporary storage directory for the sorted Key-Value files. The �→ directory must be empty, and the storage space must be greater than �→ the different from `data-source- �→ dir` and use flash storage, which can use I/O exclusively. sorted-kv-dir = "/mnt/ssd/sorted-kv-dir" [mydumper] ### The path that stores the snapshot file. data-source-dir = "${s3_path}" exported). SSD is recommended. • During the import, TiDB Lightning needs temporary space to store the sorted key- value pairs. The disk space should be enough to hold the largest single table from the data
    0 码力 | 3650 页 | 52.72 MB | 1 年前
    3
  • pdf文档 TiDB v7.6 Documentation

    updates. However, the disadvantage is also obvious. As the primary key or unique index needs to be sorted, a larger offset consumes more computing resources, especially in the case of a large volume of data factors are as follows: • Source files • Whether the data within a single file is sorted by the primary key. Sorted data can achieve optimal import performance. • Whether overlapping primary keys or non-null unique indexes exist between multiple source files. If the generated files are globally sorted, they can be distributed into different TiDB Lightning instances based on ranges to achieve optimal
    0 码力 | 6123 页 | 107.24 MB | 1 年前
    3
  • pdf文档 TiDB v7.5 Documentation

    updates. However, the disadvantage is also obvious. As the primary key or unique index needs to be sorted, a larger offset consumes more computing resources, especially in the case of a large volume of data factors are as follows: • Source files • Whether the data within a single file is sorted by the primary key. Sorted data can achieve optimal import performance. • Whether overlapping primary keys or non-null unique indexes exist between multiple source files. If the generated files are globally sorted, they can be distributed into different TiDB Lightning instances based on ranges to achieve optimal
    0 码力 | 6020 页 | 106.82 MB | 1 年前
    3
  • pdf文档 TiDB v8.5 Documentation

    · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 6729 17.15.2 Static Sorted Table / Sorted String Table (SST) · · · · · · · · · · · · · · · · · · · 6730 17.15.3 Store · · · · · · · updates. However, the disadvantage is also obvious. As the primary key or unique index needs to be sorted, a larger offset consumes more computing resources, especially in the case of a large volume of data +----+----------+---------------------+ 3 rows in set (0.15 sec) The three terms in the search results are sorted by their respective distance from the queried vector: the smaller the distance, the more relevant
    0 码力 | 6730 页 | 111.36 MB | 10 月前
    3
  • pdf文档 TiDB v6.1 Documentation

    return value contains pagination information such as offset, total pages, and whether the results are sorted. 176 { "content": [ { "coins": 200, "goods": 10, "id": 1 }, { "coins": 0, "goods": 30, "id": "pageSize": 2, "paged": true, "sort": { "empty": true, "sorted": false, "unsorted": true }, "unpaged": false }, "size": 2, "sort": { "empty": true, "sorted": false, "unsorted": true }, "totalElements": 4 "goods":10},{"id":2,"coins":0,"goods":30}]," �→ pageable":{"sort":{"empty":true,"unsorted":true,"sorted":false}," �→ offset":0,"pageNumber":0,"pageSize":2,"paged":true,"unpaged":false}," �→ last":false
    0 码力 | 4487 页 | 84.44 MB | 1 年前
    3
  • pdf文档 TiDB v8.4 Documentation

    updates. However, the disadvantage is also obvious. As the primary key or unique index needs to be sorted, a larger offset consumes more computing resources, especially in the case of a large volume of data +----+----------+---------------------+ 3 rows in set (0.15 sec) The three terms in the search results are sorted by their respective distance from the queried vector: the smaller the distance, the more relevant 6469335836410557 - text: "tree", distance: 0.798545178640937 The three terms in the search results are sorted by their respective distance from the queried vector: the smaller the distance, the more relevant
    0 码力 | 6705 页 | 110.86 MB | 10 月前
    3
  • pdf文档 TiDB v5.3 Documentation

    is empty and that the �→ disk capacity is greater than the size of the dataset to be �→ imported. sorted-kv-dir = "/path/to/local-temp-dir" 4. Configure the file routing. [mydumper] no-schema = true S3: ./tidb-lightning --tidb-port=4000 --pd-urls=127.0.0.1:2379 --backend= �→ local --sorted-kv-dir=/tmp/sorted-kvs \ -d 's3://my-bucket/sql-backup?region=us-west-2' • Use TiDB Lightning to import data mode): ./tidb-lightning --tidb-port=4000 --pd-urls=127.0.0.1:2379 --backend= �→ local --sorted-kv-dir=/tmp/sorted-kvs \ -d 's3://my-bucket/sql-backup?force-path-style=true&endpoint=http �→ ://10.154.10
    0 码力 | 2996 页 | 49.30 MB | 1 年前
    3
  • pdf文档 TiDB v8.2 Documentation

    �→ processing speed. When memory resources are insufficient, parallel �→ HashAgg spills temporary sorted data to disk, avoiding potential OOM �→ risks caused by excessive memory usage. This improves query updates. However, the disadvantage is also obvious. As the primary key or unique index needs to be sorted, a larger offset consumes more computing resources, especially in the case of a large volume of data factors are as follows: • Source files • Whether the data within a single file is sorted by the primary key. Sorted data can achieve optimal import performance. • Whether overlapping primary keys or
    0 码力 | 6549 页 | 108.77 MB | 10 月前
    3
  • pdf文档 TiDB v8.3 Documentation

    updates. However, the disadvantage is also obvious. As the primary key or unique index needs to be sorted, a larger offset consumes more computing resources, especially in the case of a large volume of data factors are as follows: • Source files • Whether the data within a single file is sorted by the primary key. Sorted data can achieve optimal import performance. • Whether overlapping primary keys or non-null unique indexes exist between multiple source files. If the generated files are globally sorted, they can be distributed 715 into different TiDB Lightning instances based on ranges to achieve
    0 码力 | 6606 页 | 109.48 MB | 10 月前
    3
  • pdf文档 TiDB v8.1 Documentation

    updates. However, the disadvantage is also obvious. As the primary key or unique index needs to be sorted, a larger offset consumes more computing resources, especially in the case of a large volume of data factors are as follows: • Source files • Whether the data within a single file is sorted by the primary key. Sorted data can achieve optimal import performance. • Whether overlapping primary keys or non-null unique indexes exist between multiple source files. If the generated files are globally sorted, they can be distributed 710 into different TiDB Lightning instances based on ranges to achieve
    0 码力 | 6479 页 | 108.61 MB | 10 月前
    3
共 30 条
  • 1
  • 2
  • 3
前往
页
相关搜索词
TiDBv5Documentationv7v8v6
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩