MOSN 高性能网络扩展实践 - 王发康MOSN 高性能网络扩展实践 王发康 2021 Gopher Meetup HZ About Me 王发康 蚂蚁集团 可信原生技术部,技术专家 蚂蚁集团技术专家,专注于高性能网络服务器研发,MOSN、Tengine 开源项目核 心成员,目前关注云原生 ServiceMesh、Nginx、Envoy、Istio 等相关领域。 喜欢开源,乐于分享。 https://github.com/wangfakang 背景介绍 — 什么是 MoE 处理性能高 (C++) 研发效能高 (GoLang、生态) 高性能、高研发效能、生态打通 MoE = MOSN + Envoy 相互融合,各取所长 在 Service Mesh 领域,Envoy 和 MOSN 作为其数据面 sidecar 之一 ,用于解决传统服务治理体系下的痛点如: 多语言,中间件组件开发适配成本高、SDK 升级困难、 技术复用度差、治理体系不统一等。 跨语言语言支持(C/C++/Rust)、 隔离性、安全性、敏捷性 处于试验阶段,性能损耗较大; WASM 目前仅对C/C++/Rust 友好, 对 GoLang Runtime 还未完全支持; 不能复用已有的 SDK,需要做网络 IO 适配改造 External-Proc Extension 跨语言支持、隔离性 需要跨进程通信性能低(UDS vs CGO 1KB Latency 差 8 倍); 需要扩展具备 gRPC server0 码力 | 29 页 | 2.80 MB | 1 年前3
22-云原生的缘起、云原生底座、PaaS 以及 Service Mesh 等之道-高磊传统实践中,主要采用虚机/物理机+SpringCloud等微服务框架的方式承载微服务应用。但在一个虚机/服务器上 部署多个微服务会产生如下问题—— • 资源预分配,短时间内难以扩展 • 缺乏隔离性,服务相互抢占资源 • 增加环境、网络(端口)和资源管理的复杂性,治理成本高 • 监控粒度难以满足微服务应用运维的需要,线上问题难以排查定位,往往需要研发介入 我们需要一种新型的、为云而生的业务承载平台,去应对上述问题。 微服务应 用 大型 在统一的K8s管理面下, 通过一种代理容器(内置 了管理虚拟机的逻辑) 来启动虚拟化Pod, 此时可以同时在统一的 容器云平台下运行微服 务化容器化或者未容器 化的传统软件了; 另一个方向是,将底层计 算、存储和网络进行超融 合,提供极其简单的底层 运维能力,进一步简化云 原生+资源层整体运维和 提升资源利用质量。 标准化能力-按需调度-Serverless 业务价值 架构 • 彻底消除传统服务端基础设施依赖,降低研发复杂性和运维难度 Servers Storage NetWorking PaaS BpmPaas iPaas MFT Paas Baas Container Service RDS Service Cache|MQ Service Big Data Service aPaas 专业PaaS(2B) 技术Paas(2D) IaaS+ • Paas可以看做是从应用角度管理资源的平台 • Paas可以看做是应用运行态稳定性保障的平台0 码力 | 42 页 | 11.17 MB | 6 月前3
云原生安全威胁分析与能力建设白皮书(来源:中国联通研究院)1 云原生安全威胁分析与 能力建设白皮书 中国联通研究院 中国联通网络安全研究院 下一代互联网宽带业务应用国家工程研究中心 2023 年 11 月 版权声明 本报告版权属于中国联合网络通信有限公司研究院,并受法 律保护。转载、摘编或利用其他方式使用本报告文字或者观点的, 应注明“来源:中国联通研究院”。违反上述声明者,本院将追 究其相关法律责任。 云原生安全威胁分析与能力建设白皮书 .................................................................25 云原生安全威胁分析与能力建设白皮书 2 2.3.4 容器网络攻击........................................................................................26 2.4 路径 2 云原生运行时安全................................................................................56 4.2.3 网络微隔离........................................................................................... 58 40 码力 | 72 页 | 2.44 MB | 1 年前3
1.3 MOSN 在云原生的探索及实践可信原生技术部,技术专家 蚂蚁集团技术专家,专注于高性能网络服务器研发,MOSN、 Tengine 开源项目核心成员,目前专注于云原生 ServiceMesh、 Nginx、Envoy、Istio 等相关领域。 喜欢开源,乐于分享。 https://github.com/wangfakang MOSN 开源交流群2 目 录 MOSN 云原生演进历程 01 MOSN 网络层扩展思考和选型 02 对应解决方案和实践介绍 MOSN 云原生演进历程 MOSN 简介 — 演进历程 MOSN 从 Service Mesh 技术调研,到产品孵化,历经重重困难,最终通过双 11 规模化验证。借力开源、反哺开 源,进行 Cloud Native 生态融合,在实践的道路上一步步的走向云原生。 2018年3月 MOSN 诞生 支持 Service Mesh 核心支付链路覆 盖 MOSN 宣布独立运营 CNCF landscape 2019年双11 2019年12月 2020年6月 2020年7月 2020年12月 2021年 MOSN 简介 — 开源社区 Committer 非蚂蚁 蚂蚁 定位:云原生网络代理平台 开源理念 社区是开源软件发展的动力 借力开源,反哺开源 持续向云原生演进 Star: 3100 Committer: 10 Contributor: 78 Corporate0 码力 | 36 页 | 35.61 MB | 1 年前3
25-云原生应用可观测性实践-向阳© 2021, YUNSHAN Networks Technology Co., Ltd. All rights reserved. 云原生应用可观测性实践 向阳 @ 云杉网络 2021-12-08 simplify the growing complexity © 2021, YUNSHAN Networks Technology Co., Ltd. All rights reserved complexity © 2021, YUNSHAN Networks Technology Co., Ltd. All rights reserved. 解决团队耦合的问题 —— 革命的思路 从SDN到第5层网络 行云流水@车联网云平台技术 2021-09-20 观测 simplify the growing complexity © 2021, YUNSHAN Networks Technology == 监控入口 Datadog Universal Service Monitoring 要点: 1、Alerts and SLOs for every service 2、No code changes required 3、Faster troubleshooting with a unified platform 4、No service left behind 50亿$ 200亿$ 500亿$0 码力 | 39 页 | 8.44 MB | 6 月前3
构建统一的云原生应用 可观测性数据平台Networks Technology Co., Ltd. All rights reserved. 构建统一的云原生应用 可观测性数据平台 DeepFlow在混合云中的实践总结 向阳@云杉网络 2022-04-09 1. 可观测性数据平台的挑战 2. 解决数据孤岛:AutoTagging 3. 降低资源开销:MultistageCodec 4. 统一数据平台的落地思路及案例 构建统一的云原生应用可观测性数据平台 例如:响应Request A的实例在一段时间内做了多少次GC? ① 看云网更清晰 Simplify the growing complexity. 数据打通并不简单 ② 应用、系统、网络的Metrics之间 例如:某个Service的Pod的QPS、IOPS、BPS分别是多少? 例如:Pod所在的KVM宿主机的CPU、内存指标? ② 看云网更清晰 Simplify the growing complexity Metrics与「非Aggregatable」的Log 例如:QPS降低与进程、服务器的日志有关联吗? ③ 看云网更清晰 Simplify the growing complexity. 数据打通并不简单 ④应用、系统、网络的Log之间 例如:应用日志ERROR与Ingress日志有什么关联吗? ④ 看云网更清晰 Simplify the growing complexity. 数据打通并不简单 ⑤「非Request0 码力 | 35 页 | 6.75 MB | 1 年前3
24-云原生中间件之道-高磊企业还 应将安全作为“一把手工程”,在部署数字化转型的同时,推进安全前置。 前沿的数字化技术也让产业安全有了更多内涵。5G、AI、隐私计算等技术在构筑数字大楼的同时,不仅带来了全新的安全场景,也成为网络安全攻防 当中的利器;2020年井喷的远程办公,拷问传统安全边界防线,让“零信任”这一有着十年历史的理念再次受到关注,成为企业构建后疫情时代安全体系 的基石;云上原生的安全能力让成本、效率、安全可以 动,隔离了风险 应用透明,全局管理视角,细粒度安全策略,针 对Node层面构建安全 采用IpTables,有一定的性能消耗 Cilium零信任 采用eBPF,为Mesh打造具备API感知和安全高效的网络层安全解决方案, 克服了Calico SDN安全和性能方面的不足 应用透明,全局管理视角,细粒度安全策略,针 对Node层面构建安全,端到端安全需要和以上安 全方案集成。 说说应用基本依赖的四大件:数据库、存储、中间件和大数据 来,使得计算层彻底变为无状态,可以做到灵活的拓展 能力和故障恢复能力。这样在计算层也实现了Serverless 模式。 • 通过RDMA,绕过CPU,直接和远端内存通信,在计算与 存储分离、计算与内存分离架构上,提升网络利用率和 性能,也能得到传统数据库网络和性能上一样的体验。 • 底层Data Chunk,采用去中心存储,单体失败不影响数 据的完整性,并且自动自愈(Serverless)。 • 通过跨域数据同步能力,实现多地域数据多活。0 码力 | 22 页 | 4.39 MB | 6 月前3
36-云原生监控体系建设-秦晓辉度的设计 •新一代监控系统更加关注应用侧的监控,没有维度标签玩不转,每个指标动辄几个、十几个标签 指标维度更为丰富 •Kubernetes体系庞大,组件众多,涉及underlay、overlay两层网络,容器内容器外两个namespace,搞懂需要花些时间 •Kubernetes的监控,缺少体系化的文档指导,关键指标是哪些?最佳实践是什么?不是随便搜索几个yaml文件能搞定的 平台侧自身复杂度变高, Kubernetes Node - 容器负载监控 抓取方案 • Pod或者容器的负载情况,是一个需要关注的点,容器层面主要关注CPU和内存使用情况,Pod 层面主要 关注网络IO的情况,因为多个容器共享Pod的net namespace,Pod内多个容器的网络数据相同 • 容器的监控数据可以直接通过 docker 引擎的接口读取到,也可以直接读取 cAdvisor 的接口,Kubelet 里 内置了cAdvisor,cAdvisor increase(container_cpu_cfs_throttled_periods_tota l[1m]) / increase(container_cpu_cfs_periods_total[1m]) * 100 Pod网络出入向流量 irate(container_network_transmit_bytes_total[1m]) * 8 irate(container_network_receive_bytes_total[1m])0 码力 | 32 页 | 3.27 MB | 6 月前3
09-harbor助你玩转云原生-邹佳参与贡献Harbor社区 云原生与制品管理 [1] 云原生(cloud-native)技术使组织能够在现代化和动态的环境下(如公有云、私有云 和混合云)构建和运行可扩展的应用程序。云原生典型技术包括容器、服务网络、 微服务、不可变基础设施和声明性API等。 v1.0 by CNCF 容器-更轻量级和灵活的虚拟化 镜像-应用软件打包与分发 OCI: https://opencontainers.org/ arbor, 更多上游仓库的支持正在进行中(与复制共享 同样的仓库适配器) 注: 可有效解决Dockerhub 限速的问题 制品的高效分发-P2P预热 • 将所选镜像提前分发到(加热)P2P网络以便客户端拉取内容时从P2P网 络直接获得 • 基于策略实现自动化 • Repository过滤器 • Tag过滤器 • 标签(label)过滤器 • 漏洞状态条件 • 签名状态条件 • 基于事件触发或者定时触发 Resources K8s Resources K8s Resources K8s Resources K8s Resources Database Service Cache Service Storage Service 构建高可用(HA)仓库服务 [4] 多数据中心HA部署 与Harbor集成 Restful API • 完善的API • 遵循OpenAPI规范 •0 码力 | 32 页 | 17.15 MB | 6 月前3
12-从数据库中间件到云原生——Apache ShardingSphere 架构演进-秦金卫迟)。 分布式数据库使用的约束: 4.数据库网格 4.数据库网格 Service Mesh 是一个基础设施层,用于处理服务间通信。云原生应用有着复杂的服 务拓扑,Service Mesh 保证请求可以在这些拓扑中可靠地穿梭。在实际应用当中, Service Mesh 通常是由一系列轻量级的网络代理组成的,它们与应用程序部署在一 起,但应用程序不需要知道它们的存在。 -- Willian0 码力 | 23 页 | 1.91 MB | 6 月前3
共 29 条
- 1
- 2
- 3













