pandas: powerful Python data analysis toolkit - 0.13.1
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 583 28 API Reference 585 28.1 Input/Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 4 5 4 3 5 5 5 [4 rows x 3 columns] A Panel setting operation on an arbitrary axis aligns the input to the Panel In [20]: p = pd.Panel(np.arange(16).reshape(2,4,2), ....: items=[’Item1’,’Item2’], as the original DataFrame filter • Reindex called with no arguments will now return a copy of the input object • TimeSeries is now an alias for Series. the property is_time_series can be used to distinguish0 码力 | 1219 页 | 4.81 MB | 1 年前3pandas: powerful Python data analysis toolkit - 0.14.0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 645 28 API Reference 647 28.1 Input/Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . convenience wrapper around the other two and will delegate to specific function depending on the provided input (database table name or sql query). In practice, you have to provide a SQLAlchemy engine to the sql objects with NaN values (GH6444) • Regression in MultiIndex.from_product with a DatetimeIndex as input (GH6439) • Bug in str.extract when passed a non-default index (GH6348) • Bug in str.split when passed0 码力 | 1349 页 | 7.67 MB | 1 年前3pandas: powerful Python data analysis toolkit - 0.15
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 797 32 API Reference 799 32.1 Input/Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . prior versions, the error messages didn’t look at the World Bank’s JSON response. Problem-inducing input were simply dropped prior to the request. The issue was that many good countries were cropped in the for list-like/Series input, and a np.timedelta64 for scalar input. It will now return a TimedeltaIndex for list-like input, Series for Series input, and Timedelta for scalar input. The arguments to pd0 码力 | 1579 页 | 9.15 MB | 1 年前3pandas: powerful Python data analysis toolkit - 0.15.1
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 783 32 API Reference 785 32.1 Input/Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . prior versions, the error messages didn’t look at the World Bank’s JSON response. Problem-inducing input were simply dropped prior to the request. The issue was that many good countries were cropped in the for list-like/Series input, and a np.timedelta64 for scalar input. It will now return a TimedeltaIndex for list-like input, Series for Series input, and Timedelta for scalar input. The arguments to pd0 码力 | 1557 页 | 9.10 MB | 1 年前3pandas: powerful Python data analysis toolkit - 0.17.0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 923 33.2 Data Input / Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 924 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 934 34 API Reference 935 34.1 Input/Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . now be to raise when presented with unparseable formats, previously this would return the original input. Also, date parse functions now return consistent results. See here • The default for dropna in HDFStore0 码力 | 1787 页 | 10.76 MB | 1 年前3pandas: powerful Python data analysis toolkit - 0.7.3
(i.e. the __getitem__ and __setitem__ methods). The behavior will be the same as passing similar input to ix except in the case of integer indexing: In [946]: s = Series(randn(6), index=list(’acegkm’)) generation (DateRange) and custom date offsets enabling the implementation of customized fre- quencies • Input/Output tools: loading tabular data from flat files (CSV, delimited, Excel 2003), and saving and loading inserted into a DataFrame. However, the vast majority of methods produce new objects and leave the input data untouched. In general, though, we like to favor immutability where sensible. 4.3 Getting Support0 码力 | 297 页 | 1.92 MB | 1 年前3pandas: powerful Python data analysis toolkit - 0.19.1
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1080 34.2 Data Input / Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1080 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1090 xxi 35 API Reference 1091 35.1 Input/Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . data with object Index may raise AttributeError (GH14424) • Corrrecly raise ValueError on empty input to pd.eval() and df.query() (GH13139) • Bug in RangeIndex.intersection when result is a empty set0 码力 | 1943 页 | 12.06 MB | 1 年前3pandas: powerful Python data analysis toolkit - 0.19.0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1078 34.2 Data Input / Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1078 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1088 35 API Reference 1089 xxi 35.1 Input/Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0, 0] Fill: 0 IntIndex Indices: array([0, 1], dtype=int32) As of v0.19.0, sparse data keeps the input dtype, and uses more appropriate fill_value defaults (0 for int64 dtype, False for bool dtype). In0 码力 | 1937 页 | 12.03 MB | 1 年前3pandas: powerful Python data analysis toolkit - 0.20.3
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1172 33.2 Data Input / Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1172 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1182 34 API Reference 1185 34.1 Input/Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . constructors with invalid input will now raise ValueError rather than PandasError, if called with scalar inputs and not axes (GH15541) • DataFrame and Panel constructors with invalid input will now raise ValueError0 码力 | 2045 页 | 9.18 MB | 1 年前3pandas: powerful Python data analysis toolkit - 0.21.1
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1208 33.2 Data Input / Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1208 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1221 34 API Reference 1223 34.1 Input/Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . inplace=True) Out[4]: 3 However, this input does not make much sense because the output is not being assigned to the target. Now, a ValueError will be raised when such an input is passed in: In [4]: pd.eval("10 码力 | 2207 页 | 8.59 MB | 1 年前3
共 32 条
- 1
- 2
- 3
- 4