pandas: powerful Python data analysis toolkit - 0.13.1haven’t used NumPy much or at all, do invest some time in learning about NumPy first. See the package overview for more detail about what’s in the library. 2 CONTENTS CHAPTER ONE WHAT’S NEW These boolean indexer. (Their distinction is strictness: match relies on re.match while contains relies on re.search.) In this release, the deprecated behavior is the default, but the new behavior is available through methods re- quire scipy. Consult the Scipy reference guide and documentation for more information about when the various methods are appropriate. See the docs. Interpolate now also accepts a limit keyword0 码力 | 1219 页 | 4.81 MB | 1 年前3
pandas: powerful Python data analysis toolkit - 0.15haven’t used NumPy much or at all, do invest some time in learning about NumPy first. See the package overview for more detail about what’s in the library. 2 CONTENTS CHAPTER ONE WHAT’S NEW These was underreported in prior versions In [1]: dfi.memory_usage(index=True) Out[1]: Index 8000 # took about 24008 bytes in < 0.15.1 A 8000 dtype: int64 current behavior: In [27]: dfi.memory_usage(index=True) mode (mean=True) so that the calculated weighted means (e.g. ‘triang’, ‘gaussian’) are distributed about the same means as those calculated without weighting (i.e. ‘boxcar’). See the note on normalization0 码力 | 1579 页 | 9.15 MB | 1 年前3
pandas: powerful Python data analysis toolkit - 0.14.0haven’t used NumPy much or at all, do invest some time in learning about NumPy first. See the package overview for more detail about what’s in the library. 2 CONTENTS CHAPTER ONE WHAT’S NEW These ’@’ prefix. – You can have an expression like df.query(’@a < a’) with no complaints from pandas about am- biguity of the name a. – The top-level pandas.eval() function does not allow you use the ’@’ boolean indexer. (Their distinction is strictness: match relies on re.match while contains relies on re.search.) In this release, the deprecated behavior is the default, but the new behavior is available through0 码力 | 1349 页 | 7.67 MB | 1 年前3
pandas: powerful Python data analysis toolkit - 0.15.1haven’t used NumPy much or at all, do invest some time in learning about NumPy first. See the package overview for more detail about what’s in the library. 2 CONTENTS CHAPTER ONE WHAT’S NEW These was underreported in prior versions In [1]: dfi.memory_usage(index=True) Out[1]: Index 8000 # took about 24008 bytes in < 0.15.1 A 8000 dtype: int64 current behavior: In [27]: dfi.memory_usage(index=True) mode (mean=True) so that the calculated weighted means (e.g. ‘triang’, ‘gaussian’) are distributed about the same means as those calculated without weighting (i.e. ‘boxcar’). See the note on normalization0 码力 | 1557 页 | 9.10 MB | 1 年前3
pandas: powerful Python data analysis toolkit - 0.17.0haven’t used NumPy much or at all, do invest some time in learning about NumPy first. See the package overview for more detail about what’s in the library. 2 CONTENTS CHAPTER ONE WHAT’S NEW These Warning: Enabling this option will affect the performance for printing of DataFrame and Series (about 2 times slower). Use only when it is actually required. Some East Asian countries use Unicode characters was underreported in prior versions In [1]: dfi.memory_usage(index=True) Out[1]: Index 8000 # took about 24008 bytes in < 0.15.1 A 8000 dtype: int64 current behavior: In [27]: dfi.memory_usage(index=True)0 码力 | 1787 页 | 10.76 MB | 1 年前3
pandas: powerful Python data analysis toolkit - 0.20.3the documentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 382 3.4.1 About the pandas documentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 382 3.4 haven’t used NumPy much or at all, do invest some time in learning about NumPy first. See the package overview for more detail about what’s in the library. 2 CONTENTS CHAPTER ONE WHAT’S NEW These remove_unused_levels() (GH16556) 1.2.3 Bug Fixes • Silenced a warning on some Windows environments about “tput: terminal attributes: No such device or address” when detecting the terminal size. This fix0 码力 | 2045 页 | 9.18 MB | 1 年前3
pandas: powerful Python data analysis toolkit - 0.19.0the documentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 332 3.4.1 About the pandas documentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 332 3.4 haven’t used NumPy much or at all, do invest some time in learning about NumPy first. See the package overview for more detail about what’s in the library. 2 CONTENTS CHAPTER ONE WHAT’S NEW These respect the random seed set via numpy.random.seed(n) (GH13161) • Styler.apply is now more strict about the outputs your function must return. For axis=0 or axis=1, the output shape must be identical. For0 码力 | 1937 页 | 12.03 MB | 1 年前3
pandas: powerful Python data analysis toolkit - 0.19.1the documentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 334 3.4.1 About the pandas documentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 334 3.4 haven’t used NumPy much or at all, do invest some time in learning about NumPy first. See the package overview for more detail about what’s in the library. 2 CONTENTS CHAPTER ONE WHAT’S NEW These respect the random seed set via numpy.random.seed(n) (GH13161) • Styler.apply is now more strict about the outputs your function must return. For axis=0 or axis=1, the output shape must be identical. For0 码力 | 1943 页 | 12.06 MB | 1 年前3
pandas: powerful Python data analysis toolkit - 0.21.1the documentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 410 3.4.1 About the pandas documentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 410 3.4 haven’t used NumPy much or at all, do invest some time in learning about NumPy first. See the package overview for more detail about what’s in the library. 2 CONTENTS CHAPTER ONE WHAT’S NEW These 0 1 2.0 2 3.0 Setting a list-like data structure into a new attribute now raises a UserWarning about the potential for unexpected behavior. See Attribute Access. 1.2.1.4 drop now also accepts index/columns0 码力 | 2207 页 | 8.59 MB | 1 年前3
pandas: powerful Python data analysis toolkit - 0.20.2the documentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 380 3.4.1 About the pandas documentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 380 3.4 haven’t used NumPy much or at all, do invest some time in learning about NumPy first. See the package overview for more detail about what’s in the library. 2 CONTENTS CHAPTER ONE WHAT’S NEW These remove_unused_levels() (GH16556) 1.1.3 Bug Fixes • Silenced a warning on some Windows environments about “tput: terminal attributes: No such device or address” when detecting the terminal size. This fix0 码力 | 1907 页 | 7.83 MB | 1 年前3
共 32 条
- 1
- 2
- 3
- 4













