pandas: powerful Python data analysis toolkit - 0.12performance delim_whitespace option • Decimal format (e.g. European format) specification • Easier CSV dialect options: escapechar, lineterminator, quotechar, etc. • More robust handling of many exceptional functions for parsing international DD/MM/YYYY dates • Allow the user to specify the CSV reader dialect to control quoting etc. • Handling thousands separators in read_csv to improve integer parsing. regular expression) • compression: decompress ’gzip’ and ’bz2’ formats on the fly. • dialect: string or csv.Dialect instance to expose more ways to specify the file format • dtype: A data type name or0 码力 | 657 页 | 3.58 MB | 1 年前3
pandas: powerful Python data analysis toolkit - 0.13.1performance delim_whitespace option • Decimal format (e.g. European format) specification • Easier CSV dialect options: escapechar, lineterminator, quotechar, etc. • More robust handling of many exceptional functions for parsing international DD/MM/YYYY dates • Allow the user to specify the CSV reader dialect to control quoting etc. • Handling thousands separators in read_csv to improve integer parsing. regular expression) • compression: decompress ’gzip’ and ’bz2’ formats on the fly. • dialect: string or csv.Dialect instance to expose more ways to specify the file format • dtype: A data type name or0 码力 | 1219 页 | 4.81 MB | 1 年前3
pandas: powerful Python data analysis toolkit - 0.14.0performance delim_whitespace option • Decimal format (e.g. European format) specification • Easier CSV dialect options: escapechar, lineterminator, quotechar, etc. • More robust handling of many exceptional functions for parsing international DD/MM/YYYY dates • Allow the user to specify the CSV reader dialect to control quoting etc. • Handling thousands separators in read_csv to improve integer parsing. regular expression) • compression: decompress ’gzip’ and ’bz2’ formats on the fly. • dialect: string or csv.Dialect instance to expose more ways to specify the file format • dtype: A data type name or0 码力 | 1349 页 | 7.67 MB | 1 年前3
pandas: powerful Python data analysis toolkit - 0.15bugs for Timedelta arithmetic and comparisons (GH8813, GH5963, GH5436). • sql_schema now generates dialect appropriate CREATE TABLE statements (GH8697) • slice string method now takes step into account (GH8754) issue is DataFrame.dtypes when options.mode.use_inf_as_null is True (GH8722) • Bug in read_csv, dialect parameter would not take a string (:issue: 8703) • Bug in slicing a multi-index level with an empty-list performance delim_whitespace option • Decimal format (e.g. European format) specification • Easier CSV dialect options: escapechar, lineterminator, quotechar, etc. • More robust handling of many exceptional0 码力 | 1579 页 | 9.15 MB | 1 年前3
pandas: powerful Python data analysis toolkit - 0.15.1issue is DataFrame.dtypes when options.mode.use_inf_as_null is True (GH8722) • Bug in read_csv, dialect parameter would not take a string (:issue: 8703) • Bug in slicing a multi-index level with an empty-list performance delim_whitespace option • Decimal format (e.g. European format) specification • Easier CSV dialect options: escapechar, lineterminator, quotechar, etc. • More robust handling of many exceptional functions for parsing international DD/MM/YYYY dates • Allow the user to specify the CSV reader dialect to control quoting etc. • Handling thousands separators in read_csv to improve integer parsing.0 码力 | 1557 页 | 9.10 MB | 1 年前3
pandas: powerful Python data analysis toolkit - 0.25to use for UTF when reading/writing (e.g. 'utf-8'). List of Python standard encodings. dialect [str or csv.Dialect instance, default None] If provided, this parameter will override values (default or not) quotechar, and quoting. If it is necessary to override values, a ParserWarning will be issued. See csv.Dialect documentation for more details. Error handling error_bad_lines [boolean, default True] Lines with decimal, �→lineterminator, quotechar, quoting, doublequote, escapechar, comment, encoding, �→dialect, error_bad_lines, warn_bad_lines, delim_whitespace, low_memory, memory_map, �→float_precision)0 码力 | 698 页 | 4.91 MB | 1 年前3
pandas: powerful Python data analysis toolkit - 0.19.0dtype are satisfied (GH13209) Google BigQuery Enhancements • The read_gbq() method has gained the dialect argument to allow users to specify whether to use Big- Query’s legacy SQL or BigQuery’s standard bugs for Timedelta arithmetic and comparisons (GH8813, GH5963, GH5436). • sql_schema now generates dialect appropriate CREATE TABLE statements (GH8697) • slice string method now takes step into account (GH8754) 9, 2014) 163 pandas: powerful Python data analysis toolkit, Release 0.19.0 • Bug in read_csv, dialect parameter would not take a string (:issue: 8703) • Bug in slicing a multi-index level with an empty-list0 码力 | 1937 页 | 12.03 MB | 1 年前3
pandas: powerful Python data analysis toolkit - 0.19.1analysis toolkit, Release 0.19.1 Google BigQuery Enhancements • The read_gbq() method has gained the dialect argument to allow users to specify whether to use Big- Query’s legacy SQL or BigQuery’s standard bugs for Timedelta arithmetic and comparisons (GH8813, GH5963, GH5436). • sql_schema now generates dialect appropriate CREATE TABLE statements (GH8697) • slice string method now takes step into account (GH8754) 1. What’s New pandas: powerful Python data analysis toolkit, Release 0.19.1 • Bug in read_csv, dialect parameter would not take a string (:issue: 8703) • Bug in slicing a multi-index level with an empty-list0 码力 | 1943 页 | 12.06 MB | 1 年前3
pandas: powerful Python data analysis toolkit - 0.20.3“bad” lines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1014 24.1.17 Dialect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1015 read_csv() will now issue a ParserWarning whenever there are conflicting values provided by the dialect parameter and the user (GH14898) • pd.read_csv() will now raise a ValueError for the C engine if not being respected during column width infer- ence (GH11256) • Bug in pd.read_csv() in which the dialect parameter was not being verified before processing (GH14898) • Bug in pd.read_csv() in which missing0 码力 | 2045 页 | 9.18 MB | 1 年前3
pandas: powerful Python data analysis toolkit - 0.20.2“bad” lines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1010 24.1.17 Dialect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1010 read_csv() will now issue a ParserWarning whenever there are conflicting values provided by the dialect parameter and the user (GH14898) • pd.read_csv() will now raise a ValueError for the C engine if not being respected during column width infer- ence (GH11256) • Bug in pd.read_csv() in which the dialect parameter was not being verified before processing (GH14898) • Bug in pd.read_csv() in which missing0 码力 | 1907 页 | 7.83 MB | 1 年前3
共 29 条
- 1
- 2
- 3













