pandas: powerful Python data analysis toolkit - 0.13.1functions allowing 2/3 compatibility. It contains both list and itera- tor versions of range, filter, map and zip, plus other necessary elements for Python 3 compatibility. lmap, lzip, lrange and lfilter all = date_range(dt, periods=5, freq=bday_egypt).to_series() In [48]: print(Series(dts.weekday, dts).map(Series(’Mon Tue Wed Thu Fri Sat Sun’.split()))) 2013-04-30 Tue 2013-05-02 Thu 2013-05-05 Sun 2013-05-06 keys with many “empty” combina- tions • VBENCH New Cython vectorized function map_infer speeds up Series.apply and Series.map sig- nificantly when passed elementwise Python function, motivated by (GH355)0 码力 | 1219 页 | 4.81 MB | 1 年前3
pandas: powerful Python data analysis toolkit - 0.21.12.1 Possible incompatibility for HDF5 formats created with pandas < 0.13.0 . . . . . . 51 1.5.2.2 Map on Index types now return other Index types . . . . . . . . . . . . . . . . . . 52 1.5.2.3 Accessing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1745 34.6.1.78 pandas.Index.map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1745 34.6.1.79 pandas.Index.max . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1790 34.10.1.91pandas.MultiIndex.map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1790 34.10.1.92pandas.MultiIndex.max0 码力 | 2207 页 | 8.59 MB | 1 年前3
pandas: powerful Python data analysis toolkit - 0.20.3Possible incompatibility for HDF5 formats created with pandas < 0.13.0 . . . . . . 22 i 1.3.2.2 Map on Index types now return other Index types . . . . . . . . . . . . . . . . . . 23 1.3.2.3 Accessing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1651 34.6.1.77 pandas.Index.map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1651 34.6.1.78 pandas.Index.max . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1688 34.9.1.90 pandas.MultiIndex.map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1689 34.9.1.91 pandas.MultiIndex.max0 码力 | 2045 页 | 9.18 MB | 1 年前3
pandas: powerful Python data analysis toolkit - 0.14.0functions allowing 2/3 compatibility. It contains both list and itera- tor versions of range, filter, map and zip, plus other necessary elements for Python 3 compatibility. lmap, lzip, lrange and lfilter all In [48]: dts = date_range(dt, periods=5, freq=bday_egypt) In [49]: print(Series(dts.weekday, dts).map(Series(’Mon Tue Wed Thu Fri Sat Sun’.split()))) 2013-04-30 Tue 2013-05-02 Thu 2013-05-05 Sun 2013-05-06 keys with many “empty” combina- tions • VBENCH New Cython vectorized function map_infer speeds up Series.apply and Series.map sig- nificantly when passed elementwise Python function, motivated by (GH355)0 码力 | 1349 页 | 7.67 MB | 1 年前3
pandas: powerful Python data analysis toolkit - 0.17.0cosh, tanh, arcsin, arccos, arctan, arccosh, arcsinh, arctanh, abs and arctan2. These functions map to the intrinsics for the NumExpr engine. For the Python engine, they are mapped to NumPy calls. Changes Bug in Series.shift and DataFrame.shift not supporting categorical data (GH9416) • Bug in Series.map using categorical Series raises AttributeError (GH10324) • Bug in MultiIndex.get_level_values including (GH8884). • Added gbq.generate_bq_schema() function to the gbq module (GH8325). • Series now works with map objects the same way as generators (GH8909). • Added context manager to HDFStore for automatic closing0 码力 | 1787 页 | 10.76 MB | 1 年前3
pandas: powerful Python data analysis toolkit - 0.12= date_range(dt, periods=5, freq=bday_egypt).to_series() In [48]: print Series(dts.weekday, dts).map(Series(’Mon Tue Wed Thu Fri Sat Sun’.split())) 2013-04-30 Tue 2013-05-02 Thu 2013-05-05 Sun 2013-05-06 keys with many “empty” combina- tions • VBENCH New Cython vectorized function map_infer speeds up Series.apply and Series.map sig- nificantly when passed elementwise Python function, motivated by (GH355) DataFrame and analogously map on Series accept any Python function taking a single value and returning a single value. For example: In [96]: f = lambda x: len(str(x)) In [97]: df[’one’].map(f) a 15 b 14 c0 码力 | 657 页 | 3.58 MB | 1 年前3
pandas: powerful Python data analysis toolkit - 0.19.0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1578 pandas.Index.map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1578 pandas.Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1604 pandas.CategoricalIndex.map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1604 pandas.CategoricalIndex.max . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1633 pandas.MultiIndex.map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1634 pandas.MultiIndex0 码力 | 1937 页 | 12.03 MB | 1 年前3
pandas: powerful Python data analysis toolkit - 0.19.1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1581 pandas.Index.map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1581 pandas.Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1608 pandas.CategoricalIndex.map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1608 pandas.CategoricalIndex.max . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1638 pandas.MultiIndex.map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1638 pandas.MultiIndex0 码力 | 1943 页 | 12.06 MB | 1 年前3
pandas: powerful Python data analysis toolkit - 0.15(GH8884). • Added gbq.generate_bq_schema() function to the gbq module (GH8325). • Series now works with map objects the same way as generators (GH8909). • Added context manager to HDFStore for automatic closing with a list of indexers on a single-multi index level (that is not nested) (GH7349) • Bug in Series.map when mapping a dict with tuple keys of different lengths (GH7333) • Bug all StringMethods now work functions allowing 2/3 compatibility. It contains both list and itera- tor versions of range, filter, map and zip, plus other necessary elements for Python 3 compatibility. lmap, lzip, lrange and lfilter all0 码力 | 1579 页 | 9.15 MB | 1 年前3
pandas: powerful Python data analysis toolkit - 1.3.2NumPy arrays and return another array or value), the methods applymap() on DataFrame and analogously map() on Series accept any Python function taking a single value and returning a single value. For example: NaN 0.279344 -0.613172 In [198]: def f(x): .....: return len(str(x)) .....: In [199]: df4["one"].map(f) Out[199]: a 18 (continues on next page) 2.3. Essential basic functionality 223 pandas: powerful two three a 18 17 3 b 19 18 20 c 18 18 16 d 3 19 19 Series.map() has an additional feature; it can be used to easily “link” or “map” values defined by a secondary series. This is closely related to0 码力 | 3509 页 | 14.01 MB | 1 年前3
共 32 条
- 1
- 2
- 3
- 4













