积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部后端开发(20)Python(20)Tornado(20)

语言

全部英语(20)

格式

全部PDF文档 PDF(10)其他文档 其他(10)
 
本次搜索耗时 0.109 秒,为您找到相关结果约 20 个.
  • 全部
  • 后端开发
  • Python
  • Tornado
  • 全部
  • 英语
  • 全部
  • PDF文档 PDF
  • 其他文档 其他
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • epub文档 Tornado 4.5 Documentation

    server tornado.httpclient — Asynchronous HTTP client tornado.httputil — Manipulate HTTP headers and URLs tornado.http1connection – HTTP/1.x client/server implementation Asynchronous networking tornado parallel_fetch_many(urls): responses = yield [http_client.fetch(url) for url in urls] # responses is a list of HTTPResponses in the same order @gen.coroutine def parallel_fetch_dict(urls): responses responses = yield {url: http_client.fetch(url) for url in urls} # responses is a dict {url: HTTPResponse} Interleaving Sometimes it is useful to save a Future instead of yielding
    0 码力 | 333 页 | 322.34 KB | 1 年前
    3
  • pdf文档 Tornado 6.1 Documentation

    parallel_fetch_many(urls): responses = await multi ([http_client.fetch(url) for url in urls]) # responses is a list of HTTPResponses in the same order async def parallel_fetch_dict(urls): responses = await await multi({url: http_client.fetch(url) for url in urls}) # responses is a dict {url: HTTPResponse} In decorated coroutines, it is possible to yield the list or dict directly: @gen.coroutine def pa queue, then calls task_done to decrement the counter once. Eventually, a worker fetches a page whose URLs have all been seen before, and there is also no work left in the queue. Thus that worker’s call to
    0 码力 | 245 页 | 904.24 KB | 1 年前
    3
  • pdf文档 Tornado 5.1 Documentation

    parallel_fetch_many(urls): responses = await multi ([http_client.fetch(url) for url in urls]) # responses is a list of HTTPResponses in the same order async def parallel_fetch_dict(urls): responses = await await multi({url: http_client.fetch(url) for url in urls}) # responses is a dict {url: HTTPResponse} In decorated coroutines, it is possible to yield the list or dict directly: @gen.coroutine def pa queue, then calls task_done to decrement the counter once. Eventually, a worker fetches a page whose URLs have all been seen before, and there is also no work left in the queue. Thus that worker’s call to
    0 码力 | 243 页 | 895.80 KB | 1 年前
    3
  • pdf文档 Tornado 6.0 Documentation

    parallel_fetch_many(urls): responses = await multi ([http_client.fetch(url) for url in urls]) # responses is a list of HTTPResponses in the same order async def parallel_fetch_dict(urls): responses = await await multi({url: http_client.fetch(url) for url in urls}) # responses is a dict {url: HTTPResponse} In decorated coroutines, it is possible to yield the list or dict directly: @gen.coroutine def pa queue, then calls task_done to decrement the counter once. Eventually, a worker fetches a page whose URLs have all been seen before, and there is also no work left in the queue. Thus that worker’s call to
    0 码力 | 245 页 | 885.76 KB | 1 年前
    3
  • pdf文档 Tornado 4.5 Documentation

    parallel_fetch_many(urls): responses = yield [http_client.fetch(url) for url in urls] # responses is a list of HTTPResponses in the same order @gen.coroutine def parallel_fetch_dict(urls): responses = yield yield {url: http_client.fetch(url) for url in urls} # responses is a dict {url: HTTPResponse} Interleaving Sometimes it is useful to save a Future instead of yielding it immediately, so you can start queue, then calls task_done to decrement the counter once. Eventually, a worker fetches a page whose URLs have all been seen before, and there is also no work left in the queue. Thus that worker’s call to
    0 码力 | 222 页 | 833.04 KB | 1 年前
    3
  • epub文档 Tornado 5.1 Documentation

    server tornado.httpclient — Asynchronous HTTP client tornado.httputil — Manipulate HTTP headers and URLs tornado.http1connection – HTTP/1.x client/server implementation Asynchronous networking tornado parallel_fetch_many(urls): responses = await multi ([http_client.fetch(url) for url in urls]) # responses is a list of HTTPResponses in the same order async def parallel_fetch_dict(urls): responses responses = await multi({url: http_client.fetch(url) for url in urls}) # responses is a dict {url: HTTPResponse} In decorated coroutines, it is possible to yield the list or dict
    0 码力 | 359 页 | 347.32 KB | 1 年前
    3
  • pdf文档 Tornado 6.4 Documentation

    parallel_fetch_many(urls): responses = await multi ([http_client.fetch(url) for url in urls]) # responses is a list of HTTPResponses in the same order async def parallel_fetch_dict(urls): responses = await await multi({url: http_client.fetch(url) for url in urls}) # responses is a dict {url: HTTPResponse} In decorated coroutines, it is possible to yield the list or dict directly: @gen.coroutine def pa queue, then calls task_done to decrement the counter once. Eventually, a worker fetches a page whose URLs have all been seen before, and there is also no work left in the queue. Thus that worker’s call to
    0 码力 | 268 页 | 1.09 MB | 1 年前
    3
  • pdf文档 Tornado 6.2 Documentation

    parallel_fetch_many(urls): responses = await multi ([http_client.fetch(url) for url in urls]) # responses is a list of HTTPResponses in the same order async def parallel_fetch_dict(urls): responses = await await multi({url: http_client.fetch(url) for url in urls}) # responses is a dict {url: HTTPResponse} In decorated coroutines, it is possible to yield the list or dict directly: @gen.coroutine def pa queue, then calls task_done to decrement the counter once. Eventually, a worker fetches a page whose URLs have all been seen before, and there is also no work left in the queue. Thus that worker’s call to
    0 码力 | 260 页 | 1.06 MB | 1 年前
    3
  • pdf文档 Tornado 6.4 Documentation

    parallel_fetch_many(urls): responses = await multi ([http_client.fetch(url) for url in urls]) # responses is a list of HTTPResponses in the same order async def parallel_fetch_dict(urls): responses = await await multi({url: http_client.fetch(url) for url in urls}) # responses is a dict {url: HTTPResponse} In decorated coroutines, it is possible to yield the list or dict directly: @gen.coroutine def pa queue, then calls task_done to decrement the counter once. Eventually, a worker fetches a page whose URLs have all been seen before, and there is also no work left in the queue. Thus that worker’s call to
    0 码力 | 268 页 | 1.09 MB | 1 年前
    3
  • pdf文档 Tornado 6.4 Documentation

    parallel_fetch_many(urls): responses = await multi ([http_client.fetch(url) for url in urls]) # responses is a list of HTTPResponses in the same order async def parallel_fetch_dict(urls): responses = await await multi({url: http_client.fetch(url) for url in urls}) # responses is a dict {url: HTTPResponse} In decorated coroutines, it is possible to yield the list or dict directly: @gen.coroutine def pa queue, then calls task_done to decrement the counter once. Eventually, a worker fetches a page whose URLs have all been seen before, and there is also no work left in the queue. Thus that worker’s call to
    0 码力 | 268 页 | 1.09 MB | 1 年前
    3
共 20 条
  • 1
  • 2
前往
页
相关搜索词
Tornado4.5Documentation6.15.16.06.46.2
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩