积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部云计算&大数据(12)机器学习(12)

语言

全部英语(6)中文(简体)(6)

格式

全部PDF文档 PDF(12)
 
本次搜索耗时 0.038 秒,为您找到相关结果约 12 个.
  • 全部
  • 云计算&大数据
  • 机器学习
  • 全部
  • 英语
  • 中文(简体)
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 深度学习下的图像视频处理技术-沈小勇

    HD video generation from low-res sources Motivation 35 Old and Fundamental Several decades ago [Huang et al, 1984] → near recent Many Applications HD video generation from low-res sources Video enhancement Fundamental Several decades ago [Huang et al, 1984] → near recent Many Applications HD video generation from low-res sources Video enhancement with details Text/object recognition in surveillance videos Motivation etc. CNN-based: SRCNN [Dong et al, 2014], VDSR [Kim et al, 2016], FSRCNN [Dong et al, 2016], etc. Video SR Traditional: 3DSKR [Takeda et al, 2009], BayesSR [Liu et al, 2011], MFSR [Ma et al, 2015], etc
    0 码力 | 121 页 | 37.75 MB | 1 年前
    3
  • pdf文档 全连接神经网络实战. pytorch 版

    transmitted in any form or by any means, electronic or mechanical, including photocopying and recording, or by any information storage or retrieval system, without the prior written permission of the
    0 码力 | 29 页 | 1.40 MB | 1 年前
    3
  • pdf文档 Keras: 基于 Python 的深度学习库

    TimeDistributed video_input = Input(shape=(100, 224, 224, 3)) # 这是基于之前定义的视觉模型(权重被重用)构建的视频编码 encoded_frame_sequence = TimeDistributed(vision_model)(video_input) # 输出为向量的序列 encoded_video = LSTM(256)(en 让我们用它来编码这个问题: video_question_input = Input(shape=(100,), dtype='int32') encoded_video_question = question_encoder(video_question_input) # 这就是我们的视频问答模式: merged = keras.layers.concatenate([encoded_video, enco encoded_video_question]) output = Dense(1000, activation='softmax')(merged) video_qa_model = Model(inputs=[video_input, video_question_input], outputs=output) 快速开始 26 3.3 Keras FAQ: 常见问题解答 3.3.1 Keras
    0 码力 | 257 页 | 1.19 MB | 1 年前
    3
  • pdf文档 Machine Learning Pytorch Tutorial

    Loss Function Optimization Algorithm More info about the training process in last year's lecture video. Training & Testing Neural Networks Validation Testing Training Guide for training/validation/testing ... torch.nn – Network Layers ● Linear Layer (Fully-connected Layer) ref: last year's lecture video torch.nn – Neural Network Layers ● Linear Layer (Fully-connected Layer) x2 x1 x3 x32 y2 y1 algorithms that adjust network parameters to reduce error. (See Adaptive Learning Rate lecture video) ● E.g. Stochastic Gradient Descent (SGD) torch.optim.SGD(model.parameters(), lr, momentum = 0)
    0 码力 | 48 页 | 584.86 KB | 1 年前
    3
  • pdf文档 Lecture 1: Overview

    Many words in a document, many, many documents available on the web. Image/Video Understanding Given an/a image/video, determine what objects it contains. Determine what semantics it contains Determine market conditions and other possible side information Predict the age of a viewer watching a given video on YouTube Predict the location in 3D space of a robot arm end effector, given control signals (torques)
    0 码力 | 57 页 | 2.41 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 4 - Efficient Architectures

    a) To compress the information content of high-dimensional concepts such as text, image, audio, video, etc. to a low-dimensional representation such as a fixed length vector of floating point numbers of training the model, it is agnostic to what the embedding is for (a piece of text, audio, image, video, or some abstract concept). Here is a quick recipe to train embedding-based models: 1. Embedding directly use in your model. There are a large number of popular models across image, text, audio, and video domains that are ready-to-deploy. For instance, you should not spend resources and time training your
    0 码力 | 53 页 | 3.92 MB | 1 年前
    3
  • pdf文档 机器学习课程-温州大学-14深度学习-Vision Transformer (ViT)

    com/video/BV18Q4y1o7NY 3. Dosovitskiy. An image is worth 16×16 words: transformers for image recognition at scale. In ICLR. 4. 唐宇迪, https://www.bilibili.com/ 5. https://www.bilibili.com/video/BV1Uu411o7oY
    0 码力 | 34 页 | 2.78 MB | 1 年前
    3
  • pdf文档 阿里云上深度学习建模实践-程孟力

    SmoothL1 DiceLoss Contrasive RCNNHead MaskHead SeqHead Vit Swin Retrieval Image Generation Video Caption EasyVision: 图像视频算法库 Bert TextInput Optim izer 性能优越:  分布式存储  分布式查询 功能完备:  GSL/负采样  swin-transformer based moco. Image features 推荐模型特征 图像搜索 解决方案: 多模态预训练 Swin transformer based (Violet) VIT Video Fram es Bert Title OCR Cls Tok en Title feature OCR feature Im age feature M HSA Fusion
    0 码力 | 40 页 | 8.51 MB | 1 年前
    3
  • pdf文档 keras tutorial

    becoming more popular in data science fields like robotics, artificial intelligence(AI), audio & video recognition and image recognition. Artificial neural network is the core of deep learning methodologies Convolutional neural network is one of the most popular ANN. It is widely used in the fields of image and video recognition. It is based on the concept of convolution, a mathematical concept. It is almost similar
    0 码力 | 98 页 | 1.57 MB | 1 年前
    3
  • pdf文档 【PyTorch深度学习-龙龙老师】-测试版202112

    FCN、U-net、PSPNet、DeepLab 系列等。 预览版202112 1.4 深度学习应用 11 图 1.15 目标检测效果图 图 1.16 语义分割效果图 视频理解(Video Understanding) 随着深度学习在 2D 图片的相关任务上取得较好的效 果,具有时间维度信息的 3D 视频理解任务受到越来越多的关注。常见的视频理解任务有 视频分类、行为检测、视频主体抽取等。常用的模型有 预览版202112 第 14 章 强化学习 6 loss = -log_prob * R with tape.stop_recording(): # 优化策略网络 grads = tape.gradient(loss, self.trainable_variables)
    0 码力 | 439 页 | 29.91 MB | 1 年前
    3
共 12 条
  • 1
  • 2
前往
页
相关搜索词
深度学习图像视频处理技术沈小勇连接神经网络神经网神经网络实战pytorchKeras基于PythonMachineLearningPytorchTutorialLectureOverviewEfficientDeepBookEDLChapterArchitectures机器课程温州大学14VisionTransformerViT阿里云上建模实践程孟力kerastutorialPyTorch深度学习
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩