积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部云计算&大数据(24)机器学习(24)

语言

全部英语(15)中文(简体)(9)

格式

全部PDF文档 PDF(24)
 
本次搜索耗时 0.026 秒,为您找到相关结果约 24 个.
  • 全部
  • 云计算&大数据
  • 机器学习
  • 全部
  • 英语
  • 中文(简体)
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 AI大模型千问 qwen 中文文档

    �→below prompt = "Give me a short introduction to large language model." messages = [ {"role": "system", "content": "You are a helpful assistant."}, {"role": "user", "content": prompt} ] text = tokenizer "Content-Type: application/json" - �→d '{ "model": "Qwen/Qwen1.5-7B-Chat", "messages": [ {"role": "system", "content": "You are a helpful assistant."}, {"role": "user", "content": "Tell me something about chat_response = client.chat.completions.create( model="Qwen/Qwen1.5-7B-Chat", messages=[ {"role": "system", "content": "You are a helpful assistant."}, {"role": "user", "content": "Tell me something about
    0 码力 | 56 页 | 835.78 KB | 1 年前
    3
  • pdf文档 Lecture 1: Overview

    biological organisms Feng Li (SDU) Overview September 6, 2023 12 / 57 Steps to Design a Learning System Choose the training experience Choose exactly what is to be learned, i.e. the target function forget the training data, and just use the parameters. They are also opposite w.r.t. to statistical properties. NN makes few assumptions about the data, and has a high potential for over-fitting. Linear regression
    0 码力 | 57 页 | 2.41 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 4 - Efficient Architectures

    reduction is the process of transforming high-dimensional data into low-dimension, while retaining the properties from the high-dimensional representation. It is useful because it is often computationally infeasible and in disturbed areas as both a perennial and annual." 6,"Europa Jupiter System Mission – Laplace"," The Europa Jupiter System Mission – Laplace (EJSM/Laplace) was a proposed joint NASA/ESA unmanned space
    0 码力 | 53 页 | 3.92 MB | 1 年前
    3
  • pdf文档 keras tutorial

    and install it immediately on your system. Keras Installation Steps Keras installation is quite easy. Follow below steps to properly install Keras on your system. Step 1: Create virtual environment Matplotlib  Scipy  Seaborn Hopefully, you have installed all the above libraries on your system. If these libraries are not installed, then use the below command to install one by one. numpy popularly called as Convolution Neural Network (CNN). All convolution layer will have certain properties (as listed below), which differentiate it from other layers (say Dense layer). Filters: It refers
    0 码力 | 98 页 | 1.57 MB | 1 年前
    3
  • pdf文档 Lecture 3: Logistic Regression

    e−z Feng Li (SDU) Logistic Regression September 20, 2023 7 / 29 Logistic Regression (Contd.) Properties of the logistic function Bound: g(z) ∈ (0, 1) Symmetric: 1 − g(z) = g(−z) Gradient: g ′(z) = g(z)(1 # Feng Li (SDU) Logistic Regression September 20, 2023 20 / 29 Newton’s Method (Contd.) Some properties Highly dependent on initial guess Quadratic convergence once it is sufficiently close to x∗ If
    0 码力 | 29 页 | 660.51 KB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 6 - Advanced Learning Techniques - Technical Review

    was a good choice for the pre-training step. It was sufficient for the model to learn the general properties of the English language. The authors also found that fine-tuning such a pre-trained model for a learning with an accompanying project demonstrating its data-efficiency and compute-efficiency properties. Self-supervised learning is present and used in models across many domains now. It has become
    0 码力 | 31 页 | 4.03 MB | 1 年前
    3
  • pdf文档 PyTorch Tutorial

    computation, that is, it outputs a prediction, given the input x Model (example) • Example: • Properties: • model = ManualLinearRegression() • model.state_dic() - returns a dictionary of trainable parameters
    0 码力 | 38 页 | 4.09 MB | 1 年前
    3
  • pdf文档 Lecture 2: Linear Regression

    ▽A|A| = |A|(A−1)T Funky trace derivative ▽AT trABATC = BTATC T + BATC 1Details can be found in “Properties of the Trace and Matrix Derivatives” by John Duchi Feng Li (SDU) Linear Regression September 13
    0 码力 | 31 页 | 608.38 KB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 5 - Advanced Compression Techniques

    coding." arXiv preprint arXiv:1510.00149 (2015). 16 Bottou, Leon, and Yoshua Bengio. "Convergence properties of the k-means algorithms." Advances in neural information processing systems 7 (1994). 15 David
    0 码力 | 34 页 | 3.18 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 3 - Learning Techniques

    statistical and deep learning models which synthesize training samples by learning the intrinsic properties of a training set. These models can be viewed as an extension of mixing techniques as statistical
    0 码力 | 56 页 | 18.93 MB | 1 年前
    3
共 24 条
  • 1
  • 2
  • 3
前往
页
相关搜索词
AI模型千问qwen中文文档LectureOverviewEfficientDeepLearningBookEDLChapterArchitectureskerastutorialLogisticRegressionAdvancedTechniquesTechnicalReviewPyTorchTutorialLinearCompression
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩