AI大模型千问 qwen 中文文档./main -h 以了解它们。 1.4.3 生成你的 GGUF 文件 We introduce the method of creating and quantizing GGUF files in quantization/llama.cpp. You can refer to that document for more information. 1.4.4 PPL 评测 llama DataArguments: data_path: str = field( default=None, metadata={"help": "Path to the training data."} ) eval_data_path: str = field( default=None, metadata={"help": "Path to the evaluation data."} ) lazy_preprocess: field(default=None) optim: str = field(default="adamw_torch") model_max_length: int = field( default=8192, metadata={ "help": "Maximum sequence length. Sequences will be right padded (and␣ �→possibly truncated)0 码力 | 56 页 | 835.78 KB | 1 年前3
《Efficient Deep Learning Book》[EDL] Chapter 2 - Compression Techniquesallocates the space for the required tensors. The input_details and output_details variables are the metadata objects that describe the input and output tensors extracted from the interpreter. For a quantized pair of shoes or a couple of books to read. In the realm of the internet, videos, audios and data files are all compressed using a suitable format. It wasn’t a surprise that the idea of compression crept0 码力 | 33 页 | 1.96 MB | 1 年前3
Keras: 基于 Python 的深度学习库write_grads=False, write_images=False, embeddings_freq=0, embeddings_layer_names=None, embeddings_metadata=None) Tensorboard 基本可视化。 TensorBoard 是由 Tensorflow 提供的一个可视化工具。 这个回调函数为 Tensorboard 编写一个日志,这样你可以可视化测试和训练的标准评估的动 被选中的嵌入层会被保存的频率(在训练轮中)。 • embeddings_layer_names: 一个列表,会被监测层的名字。如果是 None 或空列表,那么所 有的嵌入层都会被监测。 • embeddings_metadata: 一个字典,对应层的名字到保存有这个嵌入层元数据文件的名字。 查看 详情 关于元数据的数据格式。以防同样的元数据被用于所用的嵌入层,字符串可以 被传入。 11.1.11 ReduceLROnPlateau0 码力 | 257 页 | 1.19 MB | 1 年前3
keras tutorialinstall numpy you could see the following response, Collecting numpy Downloading https://files.pythonhosted.org/packages/cf/a4/d5387a74204542a60ad1baa84cd2d3353 c330e59be8cf2d47c0b11d3cde8/ install pandas We could see the following response: Collecting pandas Downloading https://files.pythonhosted.org/packages/cf/a4/d5387a74204542a60ad1baa84cd2d3353 c330e59be8cf2d47c0b11d3cde8/ matplotlib We could see the following response: Collecting matplotlib Downloading https://files.pythonhosted.org/packages/cf/a4/d5387a74204542a60ad1baa84cd2d3353 c330e59be8cf2d47c0b11d3cde8/0 码力 | 98 页 | 1.57 MB | 1 年前3
Experiment 1: Linear Regressionstart a very simple case where n = 1. Download data1.zip, and extract the files (ex1x.dat and ex1y.dat) from the zip file. The files contain some example measurements of heights for various boys between the complicated case where each training data contains mul- tiple features. Download data1.zip, and extract the files (ex2x.dat and ex2y.dat) from the zip file. This is a training set of housing prices in Portland, Oregon0 码力 | 7 页 | 428.11 KB | 1 年前3
《Efficient Deep Learning Book》[EDL] Chapter 5 - Advanced Compression Techniquesregular model and its 50% sparse version. We used Tensorflow's save_model() API and zipped the model files using gzip. In addition to the usual models, the figure also shows compressed size comparisons for mentioned, the sizes reported in the above snippet are computed after running gzip on the generated model files. The original model’s size after gzip was 1442.9 KB. Applying clustering on the original model, followed0 码力 | 34 页 | 3.18 MB | 1 年前3
Experiment 2: Logistic Regression and Newton's Methodlogistic regression on a classification problem. 2 Data To begin, download data2.zip and extract the files from the zip file. For this exer- cise, suppose that a high school has a dataset representing 40 students0 码力 | 4 页 | 196.41 KB | 1 年前3
TensorFlow on Yarn:深度学习遇上大数据⾏ 代码)� 扩展目标:� TensorFlow on Yarn设计 tensorflow-submit \� --app-name “tfdemo” \#作业名� --files tfTestDemo.py,dataDeal.py \ #依赖的本地⽂件� --tfcmd “python tfTestDemo.py --training_epochs=20” \ #TF运⾏指令�0 码力 | 32 页 | 4.06 MB | 1 年前3
PyTorch TutorialInstall the Python extension. • ???????????? Install the Remote Development extension. • Python files can be run like Jupyter notebooks by delimiting cells/sections with #%% • Debugging PyTorch code0 码力 | 38 页 | 4.09 MB | 1 年前3
QCon北京2018-《从键盘输入到神经网络--深度学习在彭博的应用》-李碧野Challenges – Scale of Financial Information Companies Market Types Speed To Market Problematic Files/Input Accuracy Modified from https://upload.wikimedia.org/wikipedia/commons/d/dc/UnderwoodKeybo0 码力 | 64 页 | 13.45 MB | 1 年前3
共 13 条
- 1
- 2













