积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部云计算&大数据(7)机器学习(7)

语言

全部中文(简体)(4)英语(3)

格式

全部PDF文档 PDF(7)
 
本次搜索耗时 0.030 秒,为您找到相关结果约 7 个.
  • 全部
  • 云计算&大数据
  • 机器学习
  • 全部
  • 中文(简体)
  • 英语
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 机器学习课程-温州大学-04机器学习-朴素贝叶斯

    ports)有 关。我们的训练数据有5句话: 文本 标签 A great game Sports The election was over Not Sports Very clean match Sports A clean but forgettable game Sports It was a close election Not Sports 我们想要计算句子“A very close 的概率为⅗。 ?(Not Sports )是⅖。 文本 标签 A great game Sports The election was over Not Sports Very clean match Sports A clean but forgettable game Sports It was a close election Not Sports 23 3.朴素贝叶斯案例 'very', 'over', 'it', 'but', 'game', 'election', 'clean', 'close', 'the', 'was', 'forgettable', 'match']。 由于可能的单词数是14,因此应用平滑处理可以得到 ?( game | sports ) = 2+1 11+14 14个单词 24 3.朴素贝叶斯案例 拉普拉斯平滑是一种用于平
    0 码力 | 31 页 | 1.13 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 5 - Advanced Compression Techniques

    frequency of data. Clustering helps solve that problem by adapting the allocation of precision to match the distribution of the data, which ensures the decoded value deviates less from the original value networks on a variety of web, mobile, and embedded devices, provided the user can design networks that match their constraints. One might wonder what are the drawbacks of structured sparsity? It’s easy: with lies a smaller network which can be extracted without using the fine-tuned weights and retrained to match or exceed the performance of the larger network. Liu et al. in their work titled "Rethinking the Value
    0 码力 | 34 页 | 3.18 MB | 1 年前
    3
  • pdf文档 深度学习与PyTorch入门实战 - 10. Broadcasting

    [5.0] ▪ 2. memory consumption ▪ [4, 32, 8] => 1024 ▪ [5.0] => 1 Is it broadcasting-able? ▪ Match from Last dim! ▪ If current dim=1, expand to same ▪ If either has no dim, insert one dim and expand ▪ When it has dim of size 1 ▪ Treat it shared by all ▪ [class, student, scores] + [student, 1] match from last dim It's effective and critically, intuitive ▪ [4, 3, 32, 32] ▪ + [32, 32] ▪ + [3
    0 码力 | 12 页 | 551.84 KB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 3 - Learning Techniques

    a higher (2.42%) accuracy with fewer samples. Both the augmented and the baseline 500 runs almost match the sample efficiencies (baseline 500 achieves a higher accuracy one epoch sooner than the augmented distillation technique on single models as well as on ensemble of models. Hinton et al. were able to closely match the accuracy of an ensemble of ten models for a speech recognition task with a single distilled model
    0 码力 | 56 页 | 18.93 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 2 - Compression Techniques

    input dimension (D1 as stated earlier). The shape of the weights tensor is [3, 5], 3 is chosen to match D1, and 5 is D2. Bias is of shape [5]. The shapes are arbitrarily chosen for illustration purposes
    0 码力 | 33 页 | 1.96 MB | 1 年前
    3
  • pdf文档 AI大模型千问 qwen 中文文档

    =["‘ “ 「 『]{1,2}|$))') sent_list = [] for ele in sent_sep_pattern.split(text): if sent_sep_pattern.match(ele) and sent_list: sent_list[-1] += ele elif ele: sent_list.append(ele) return sent_list def
    0 码力 | 56 页 | 835.78 KB | 1 年前
    3
  • pdf文档 【PyTorch深度学习-龙龙老师】-测试版202112

    RuntimeError: The size of tensor a (3) must match the size of tensor b (2) at non-singleton dimension 3 # 错误 2 RuntimeError: The expanded size of the tensor (3) must match the existing size (2) at non-singleton 35,8]) torch.cat([a,b], dim=0) # 非法拼接,其他维度长度不相同 Out[3]: RuntimeError: Sizes of tensors must match except in dimension 0. Got 32 and 35 in dimension 1 堆叠 拼接操作直接在现有维度上合并数据,并不会创建新的维度。如果在合并数据 时,希望创建一个新的维度,则需要使用
    0 码力 | 439 页 | 29.91 MB | 1 年前
    3
共 7 条
  • 1
前往
页
相关搜索词
机器学习课程温州大学04朴素贝叶贝叶斯EfficientDeepLearningBookEDLChapterAdvancedCompressionTechniques深度PyTorch入门实战10BroadcastingAI模型千问qwen中文文档深度学习
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩