积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部云计算&大数据(17)机器学习(17)

语言

全部英语(11)中文(简体)(6)

格式

全部PDF文档 PDF(17)
 
本次搜索耗时 0.101 秒,为您找到相关结果约 17 个.
  • 全部
  • 云计算&大数据
  • 机器学习
  • 全部
  • 英语
  • 中文(简体)
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 keras tutorial

    represents dendrites.  Sum of input along with activation function represents neurons. Sum actually means computed value of all inputs and activation function represent a function, which modify the layers, convolution layer, pooling layer, etc., Keras model and layer access Keras modules for activation function, loss function, regularization function, etc., Using Keras model, Keras Layer, and Keras from keras.models import Sequential from keras.layers import Dense, Activation model = Sequential() model.add(Dense(512, activation='relu', input_shape=(784,))) Where,  Line 1 imports Sequential
    0 码力 | 98 页 | 1.57 MB | 1 年前
    3
  • pdf文档 Keras: 基于 Python 的深度学习库

    1 Dense [source] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 5.2.2 Activation [source] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 5.2.3 Dropout [source] 的深度学习库 2 from keras.layers import Dense model.add(Dense(units=64, activation='relu', input_dim=100)) model.add(Dense(units=10, activation='softmax')) 在完成了模型的构建后, 可以使用 .compile() 来配置学习过程: model.compil import Sequential from keras.layers import Dense, Activation model = Sequential([ Dense(32, input_shape=(784,)), Activation('relu'), Dense(10), Activation('softmax'), ]) 也可以使用 .add() 方法将各层添加到模型中: model
    0 码力 | 257 页 | 1.19 MB | 1 年前
    3
  • pdf文档 【PyTorch深度学习-龙龙老师】-测试版202112

    8(a)的情况,接下来将扩大模型容量来解决这两个问 题。 3.5 非线性模型 既然线性模型不可行,那么可以给线性模型嵌套一个非线性函数,即可将其转换为非 线性模型。通常把这个非线性函数称为激活函数(Activation Function),用?表示: = ?(?? + ?) 这里的?代表了某个具体的非线性激活函数,如 Sigmoid 函数(图 3.9(a))、ReLU 函数(图 3.9(b))。 称为感知机的净活性值(Net Activation)。 ?1 ?2 ? ?? ? ?1 ?2 ? ?? 输入? 输出 图 6.1 感知机模型 上式写成向量形式: ? = ?T? + ? 感知机是线性模型,并不能处理线性不可分问题。通过在线性模型后添加激活函数后得到 活性值(Activation) : = ?(?) = 在初始化时根据输入、输出节点数自动 生成并初始化。代码如下: class Layer: # 全连接网络层 def __init__(self, n_input, n_neurons, activation=None, weights=None, bias=None): 预览版202112 第 7 章 反向传播算法 24 """ :param
    0 码力 | 439 页 | 29.91 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 2 - Compression Techniques

    [ 0.05897928 -0.03343131 -0.041293 -0.57477116 0.79554345]] Now, apply the ReLU non-linear activation function, which can be implemented by invoking the np.maximum on y, such that it does element-wise implement this nonlinearity so easily as compared to other activation methods like tanh, sigmoid, etc. Print the output y of the activation function. This is the final output of our unquantized fully 2)) print(weights_diff) 0.003925407435722753 Now, we’ll calculate the final output after the activation function and evaluate the error between the two results. Notice that the error is very small.
    0 码力 | 33 页 | 1.96 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 3 - Learning Techniques

    preprocess_input(x)), core, layers.Flatten(), layers.Dropout(DROPOUT_RATE), layers.Dense(NUM_CLASSES, activation='softmax') ]) adam = optimizers.Adam(learning_rate=LEARNING_RATE) model.compile( optimizer=adam return_sequences=False)), layers.Dropout(0.5), layers.Dense(20, activation='relu'), layers.Flatten(), layers.Dense(1, activation='sigmoid'), ]) adam = optimizers.Adam(learning_rate=LEARNING_RATE) In this case, we use the ‘logits’ of the teacher model, which is the input to the final softmax activation layer, and divide the student model’s logits tensor by the temperature value (typically >= 1.0)
    0 码力 | 56 页 | 18.93 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 4 - Efficient Architectures

    linearly separable. We can train a model with a single fully connected layer followed by a softmax activation, since it is a binary classification task. An important caveat is that the model quality naturally reduce each input to a single vector. The result is passed through a few dense layers and a softmax activation to generate an output tensor of size num_classes. This is similar to the Word2Vec example except axis=1) x = tf.keras.layers.Dense(512, activation='relu')(x) x = tf.keras.layers.Dense(128, activation='relu')(x) x = tf.keras.layers.Dense(num_classes, activation='softmax')(x) output = x model = tf.keras
    0 码力 | 53 页 | 3.92 MB | 1 年前
    3
  • pdf文档 Machine Learning

    between the input and a pattern θ exceeds some threshold b • y = g(θT x − b) • g(·) is called activation function • Sigmoid: g(z) = 1/(1 + e−z) • ReLU: g(z) = max(z, 0) • Tanh: g(z) = (ez − e−z)/(ez • E.g., we use a chain to represent f(x) = f3(f2(f1(x))) • If we take sigmod function as the activation function • z1 = w1x + b1 and a1 = σ(z1) • z2 = w2a1 + b2 and a2 = σ(z2) • z3 = w3a2 + b3 and a3 neuron in the l-th layer • b[l] j is the bias of the j-th neuron in the l-th layer • a[l] j is the activation of the j-th neuron in the l-th layer a[l] j = σ �� k w[l] jka[l−1] k + b[l] j � 10 / 19 Back-Propagation:
    0 码力 | 19 页 | 944.40 KB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 5 - Advanced Compression Techniques

    the last few years, some researchers have started to explore activation sparsity as well. Activation sparsity involves sparsifying activation maps to produce robust models. Rhu et al., through their work work on Compression DMA Engine12, observed that a non-trivial fraction of activation values for ReLU activation function are naturally sparse. Kurtz et al. leveraged this idea in their work13 to achieve exploiting activation sparsity for fast inference on deep neural networks." International Conference on Machine Learning. PMLR, 2020. 12 Rhu, Minsoo, et al. "Compressing DMA engine: Leveraging activation sparsity
    0 码力 | 34 页 | 3.18 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 6 - Advanced Learning Techniques - Technical Review

    output = tf.keras.layers.Dense(200, activation='relu')(output) output = tf.keras.layers.Dense(100, activation='relu')(output) output = tf.keras.layers.Dense(50, activation='relu')(output) output = tf.keras keras.layers.Dense(num_classes, activation=None)(output) output = tf.keras.layers.Activation('softmax')(output) bert_classifier = tf.keras.Model(bert_inputs, output) bert_classifier.compile( optimizer=tf trained for such a task will be of size (representing the logits) and followed by the softmax activation, which as you may know look as follows: denotes the model’s output probability associated with
    0 码力 | 31 页 | 4.03 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 7 - Automation

    return tf.keras.Sequential([ tf.keras.Input(shape=(5,5)), layers.Dense(size, activation='relu'), layers.Dense(5, activation='softmax') ]) Our model, input data and the hyperparameter trial set is ready Hence, they can be executed much more frequently than the blackbox. There are several choices for activation functions such as Probability of Improvement (PI), Expected Improvement (EI), Upper Confidence preprocess_input(x)), core, layers.Flatten(), layers.Dropout(dropout_rate), layers.Dense(NUM_CLASSES, activation='softmax') ]) adam = optimizers.Adam(learning_rate=learning_rate) model.compile( optimizer=adam
    0 码力 | 33 页 | 2.48 MB | 1 年前
    3
共 17 条
  • 1
  • 2
前往
页
相关搜索词
kerastutorialKeras基于Python深度学习PyTorch深度学习EfficientDeepLearningBookEDLChapterCompressionTechniquesArchitecturesMachineAdvancedTechnicalReviewAutomation
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩