积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部云计算&大数据(34)机器学习(34)

语言

全部英语(24)中文(简体)(10)

格式

全部PDF文档 PDF(34)
 
本次搜索耗时 0.019 秒,为您找到相关结果约 34 个.
  • 全部
  • 云计算&大数据
  • 机器学习
  • 全部
  • 英语
  • 中文(简体)
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 2 - Compression Techniques

    Chapter 2 - Compression Techniques “I have made this longer than usual because I have not had time to make it shorter.” Blaise Pascal In the last chapter, we discussed a few ideas to improve the deep deep learning efficiency. Now, we will elaborate on one of those ideas, the compression techniques. Compression techniques aim to reduce the model footprint (size, latency, memory etc.). We can reduce the chapter, we introduce Quantization, a model compression technique that addresses both these issues. We’ll start with a gentle introduction to the idea of compression. Details of quantization and its applications
    0 码力 | 33 页 | 1.96 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 5 - Advanced Compression Techniques

    Advanced Compression Techniques “The problem is that we attempt to solve the simplest questions cleverly, thereby rendering them unusually complex. One should seek the simple solution.” — Anton Pavlovich Pavlovich Chekhov In this chapter, we will discuss two advanced compression techniques. By ‘advanced’ we mean that these techniques are slightly more involved than quantization (as discussed in the second of our models. Did we get you excited yet? Let’s learn about these techniques together! Model Compression Using Sparsity Sparsity or Pruning refers to the technique of removing (pruning) weights during
    0 码力 | 34 页 | 3.18 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 1 - Introduction

    efficiency in deep learning models. We will also introduce core areas of efficiency techniques (compression techniques, learning techniques, automation, efficient models & layers, infrastructure). Our hope where there might not be a single algorithm that works perfectly, and there is a large amount of unseen data that the algorithm needs to process. Unlike traditional algorithm problems where we expect exact leeway in model quality, we can trade off some of it for a smaller footprint by using lossy model compression techniques7. For example, when compressing a model naively we might reduce the model size, RAM
    0 码力 | 21 页 | 3.17 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 4 - Efficient Architectures

    chapter 2. We could also incorporate compression techniques such as sparsity, k-means clustering, etc. which will be discussed in the later chapters. 2. Even after compression, the vocabulary itself is large: Luong23 style and the Bahdanau24 style attention. In this book, we have chosen to discuss the Luong algorithm because it is used in Tensorflow’s attention layers. However, we encourage the interested readers embedding model’s quality and footprint metrics as discussed. We can combine other ideas from compression techniques and learning techniques on top of efficient architectures. As an example, we can train
    0 码力 | 53 页 | 3.92 MB | 1 年前
    3
  • pdf文档 深度学习与PyTorch入门实战 - 54. AutoEncoder自编码器

    Visualization: https://projector.tensorflow.org/ ▪ Taking advantages of unsupervised data ▪ Compression, denoising, super-resolution … Auto-Encoders https://towardsdatascience.com/applied-deep-le
    0 码力 | 29 页 | 3.49 MB | 1 年前
    3
  • pdf文档 《TensorFlow 快速入门与实战》7-实战TensorFlow人脸识别

    Xudong Cao,Fang Wen,Jian Sun.Blessing of Dimensionality: High-Dimensional Feature and Its Efficient Compression for Face Verification.2013, computer vision and pattern recognition. �L��������� ������L������������
    0 码力 | 81 页 | 12.64 MB | 1 年前
    3
  • pdf文档 从推荐模型的基础特点看大规模推荐类深度学习系统的设计 袁镱

    Communication for Distributed Deep Learning: Survey and Quantitative Evaluation [ICLR2018]Deep Gradient Compression: Reducing the Communication Bandwidth for Distributed Training Dense参数,每次 都⽤,快速收敛 Sparse参数,随数
    0 码力 | 22 页 | 6.76 MB | 1 年前
    3
  • pdf文档 Lecture 5: Gaussian Discriminant Analysis, Naive Bayes

    Lecture 5: Gaussian Discriminant Analysis, Naive Bayes and EM Algorithm Feng Li Shandong University fli@sdu.edu.cn September 27, 2023 Feng Li (SDU) GDA, NB and EM September 27, 2023 1 / 122 Outline Warm-Up Case 3 Gaussian Discriminate Analysis 4 Naive Bayes 5 Expectation-Maximization (EM) Algorithm Feng Li (SDU) GDA, NB and EM September 27, 2023 2 / 122 Probability Theory Review Sample space E[log(X)] Feng Li (SDU) GDA, NB and EM September 27, 2023 90 / 122 The Expectation-Maximization (EM) Algorithm A training set {x(1), x(2), · · · , x(m)} (without labels) The log-likelihood function ℓ(θ) =
    0 码力 | 122 页 | 1.35 MB | 1 年前
    3
  • pdf文档 Lecture 6: Support Vector Machine

    Problem of SVM 4 SVM with Kernels 5 Soft-Margin SVM 6 Sequential Minimal Optimization (SMO) Algorithm Feng Li (SDU) SVM December 28, 2021 2 / 82 Hyperplane Separates a n-dimensional space into two product in some high dimensional fea- ture space F K(x, z) = (xTz)2 or (1 + xTz)2 Any learning algorithm in which examples only appear as dot products (x(i)Tx(j)) can be kernelized (i.e., non-linearlized) 1 = 0 ∴ y(i)(ω∗Tx(i) + b∗) = 1 Feng Li (SDU) SVM December 28, 2021 71 / 82 Coordinate Ascent Algorithm Consider the following unconstrained optimization problem max α J (α1, α2, · · · , αm) Repeat
    0 码力 | 82 页 | 773.97 KB | 1 年前
    3
  • pdf文档 Lecture Notes on Linear Regression

    y(i)|. 2 Gradient Descent Gradient Descent (GD) method is a first-order iterative optimization algorithm for finding the minimum of a function. If the multi-variable function J(✓) is di↵erentiable in a = m X i=1 (✓T x(i) � y(i))x(i) j (5) We summarize the GD method in Algorithm 1. The algorithm usually starts 2 Algorithm 1: Gradient Descent Given a starting point ✓ 2 dom J repeat 1. Calculate 2: The convergence of GD algorithm. with a randomly initialized ✓. In each iteration, we update ✓ such that the objec- tive function is decreased monotonically. The algorithm is said to be converged when
    0 码力 | 6 页 | 455.98 KB | 1 年前
    3
共 34 条
  • 1
  • 2
  • 3
  • 4
前往
页
相关搜索词
EfficientDeepLearningBookEDLChapterCompressionTechniquesAdvancedIntroductionArchitectures深度学习PyTorch入门实战54AutoEncoder编码码器编码器TensorFlow快速人脸识别人脸识别推荐模型基础特点大规规模大规模系统设计LectureGaussianDiscriminantAnalysisNaiveBayesSupportVectorMachineNotesonLinearRegression
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩