积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部云计算&大数据(13)机器学习(13)

语言

全部英语(7)中文(简体)(6)

格式

全部PDF文档 PDF(13)
 
本次搜索耗时 0.036 秒,为您找到相关结果约 13 个.
  • 全部
  • 云计算&大数据
  • 机器学习
  • 全部
  • 英语
  • 中文(简体)
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 7 - Automation

    variable depth child networks. Figure 7-4 shows a sketch of their search procedure. It involves a controller which samples the search space to generate candidate architectures. The candidates are used as to the controller as reward signals. The controller incorporates the rewards signals in its gradient updates. Zoph et. al. modeled NAS as a reinforcement learning (RL) problem where the controller is a recurrent networks are the players whose rewards are determined by their performance on the target dataset. The controller model learns to generate better architectures as the search game progresses. Figure 7-4: An overview
    0 码力 | 33 页 | 2.48 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 1 - Introduction

    The controller can be thought of as a unit that generates candidate models. These candidate models are evaluated and is used to update the state, and generate better candidate models A controller unit needs to be optimized (accuracy, precision, recall, etc.), and the feedback is passed back to the controller to make better suggestions in the future. NAS has been used to generate State of the Art networks
    0 码力 | 21 页 | 3.17 MB | 1 年前
    3
  • pdf文档 PyTorch OpenVINO 开发实战系列教程第一篇

    reshape 函数之外,还有另外一个基于 tensor 的维度 转换方法 tensor.view(), 它的用法代码演示如下: x = torch.randn(4, 4) print(x.size()) x = x.view(-1, 8) print(x.size()) x = x.view(1, 1, 4, 4) print(x.size()) 运行结果如下: torch.Size([4 Size([2, 8]) torch.Size([1, 1, 4, 4]) 其中 torch.randn(4, 4) 是创建一个 4x4 的随机张量;x.view(-1, 8) 表示转换为每行八列的,-1 表示自动计算行数;x.view(1, 1, 4, 4) 表示转换为 1x1x4x4 的四维张量。其中 torch.size 表示 输出数组维度大小。 ● 其它属性操作 通道交换与寻找最大值是 print(x.size()) x = torch.tensor([2., 3., 4.,12., 3., 5., 8., 1.]) print(torch.argmax(x)) x = x.view(-1, 4) print(x.argmax(1)) 运行结果如下: torch.Size([5, 5, 3]) torch.Size([3, 5, 5]) tensor(3) tensor([3
    0 码力 | 13 页 | 5.99 MB | 1 年前
    3
  • pdf文档 pytorch 入门笔记-03- 神经网络

    relu(self.conv1(x)), 2) x = F.max_pool2d(F.relu(self.conv2(x)), 2) # 改变数据的维度 x = x.view(-1, self.num_flat_features(x)) x = F.relu(self.fc1(x)) x = F.relu(self.fc2(x)) MSELoss是一个比较简单的损失函数,它计算输出和目标间的均方误差, 例如: output = net(input) target = torch.rand(10) target = target.view(1, -1) criterion = nn.MSELoss() loss = criterion(output, target) print(loss) tensor(0.4526, gra .grad_fn 属性,将看到如下所示的计算图。 input -> conv2d -> relu -> maxpool2d -> conv2d -> relu -> maxpool2d -> view -> linear -> relu -> linear -> relu -> linear -> MSELoss -> loss 所以,当我们调用 loss.backward() 时,整张计算图都会
    0 码力 | 7 页 | 370.53 KB | 1 年前
    3
  • pdf文档 机器学习课程-温州大学-03深度学习-PyTorch入门

    ndim x.dim() x.size x.nelement() 形状操作 x.reshape x.reshape(相当于 tensor.contiguous().view()); x.view x.flatten x.view(-1);nn Flatten() 类型转换 np.floor(x) torch.floor(x); x.floor() 比较 np.less x.lt np.less_equal/np
    0 码力 | 40 页 | 1.64 MB | 1 年前
    3
  • pdf文档 【PyTorch深度学习-龙龙老师】-测试版202112

    编码函数,depth 设置向量长度 out = torch.zeros(label.size(0), depth) idx = torch.LongTensor(label).view(-1, 1) out.scatter_(dim=1, index=idx, value=1) return out y = torch.tensor([0,1,2 # x: [b, 1, 28, 28], y: [512] # 打平操作:[b, 1, 28, 28] => [b, 784] x = x.view(x.size(0), 28*28) # 送入网络模型,=> [b, 10] out = model(x) # 标签进行 one-hot transpose 操作、复制数据 tile 操作等,下面将一一 介绍。 4.7.1 改变视图 在介绍改变视图 reshape 操作之前,先来认识一下张量的存储(Storage)和视图(View)的 概念。张量的视图就是人们理解张量的方式,比如 shape 为[2,3,4,4]的张量?,从逻辑上可 以理解为 2 张图片,每张图片 4 行 4 列,每个位置有 RGB 3 个通道的数据;张量的存储体
    0 码力 | 439 页 | 29.91 MB | 1 年前
    3
  • pdf文档 深度学习与PyTorch入门实战 - 09. 维度变换

    Tensor维度变换 主讲人:龙良曲 Operation ▪ View/reshape ▪ Squeeze/unsqueeze ▪ Transpose/t/permute ▪ Expand/repeat 2 View reshape ▪ Lost dim information 3 Flexible but prone to corrupt 4 Squeeze v.s. unsqueeze
    0 码力 | 16 页 | 1.66 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 2 - Compression Techniques

    we tolerate? Let us slowly build up to that by exploring how quantization can help us. A Generic View of Quantization Quantization is a common compression technique that has been used across different matrix. D is often a one-dimension vector, hence the addition is cheap both from the latency point of view and size wise (since C dominates the size). In fact, the general formulation of Y = XW + b, is the
    0 码力 | 33 页 | 1.96 MB | 1 年前
    3
  • pdf文档 Experiment 1: Linear Regression

    should get a figure similar to Fig. 2. If you are using Matlab/Octave, you can use the orbit tool to view this plot from different viewpoints. What is the relationship between this 3D surface and the value
    0 码力 | 7 页 | 428.11 KB | 1 年前
    3
  • pdf文档 Machine Learning Pytorch Tutorial

    Tensors – PyTorch v.s. NumPy ● Many functions have the same names as well PyTorch NumPy x.reshape / x.view x.reshape x.squeeze() x.squeeze() x.unsqueeze(1) np.expand_dims(x, 1) ref: https://github.com/
    0 码力 | 48 页 | 584.86 KB | 1 年前
    3
共 13 条
  • 1
  • 2
前往
页
相关搜索词
EfficientDeepLearningBookEDLChapterAutomationIntroductionPyTorchOpenVINO开发实战系列教程第一一篇第一篇pytorch入门笔记03神经网络神经网神经网络机器学习课程温州大学深度深度学习09维度变换CompressionTechniquesExperimentLinearRegressionMachinePytorchTutorial
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩