积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部云计算&大数据(11)机器学习(11)

语言

全部英语(8)中文(简体)(3)

格式

全部PDF文档 PDF(11)
 
本次搜索耗时 0.036 秒,为您找到相关结果约 11 个.
  • 全部
  • 云计算&大数据
  • 机器学习
  • 全部
  • 英语
  • 中文(简体)
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 AI大模型千问 qwen 中文文档

    TextStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True) # This will print the output in the streaming mode. generated_ids = model.generate( model_inputs, max_new_tokens=512, streamer=streamer, ) 除了使用
    0 码力 | 56 页 | 835.78 KB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 3 - Learning Techniques

    scenarios. The validation set contains 10000 samples. As in the previous project, we start with setting up the required libraries, and loading the training and validation sets. We leverage the nlpaug library well as using the distillation loss function which uses the soft labels from the teacher. In this setting, the teacher is frozen, and only the student receives the gradient updates. Assume that we are shuffle=True) return model, model_history.history Now, we can train the smaller model in a distillation setting. We see that it achieves an accuracy of 81%! This is an improvement of 7.53%, which is quite a significant
    0 码力 | 56 页 | 18.93 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 5 - Advanced Compression Techniques

    and some retained nodes have fewer connections. Let's do an exercise to convince ourselves that setting parameter values to zero indeed results in a higher compression ratio. Figure 5-1: An illustration input array using gzip compression. It returns the compressed bytes. # Sparsify the weights by setting a fraction of the weights to zero. def sparsify_smallest(w, sparsity_rate): w = w.copy() w_1d us create a random x like we saw in figure 5-6, and try to run our clustering algorithm on it. # Setting a seed here helps us reproduce the same output over multiple runs. np.random.seed(1337) # Let's
    0 码力 | 34 页 | 3.18 MB | 1 年前
    3
  • pdf文档 深度学习下的图像视频处理技术-沈小勇

    make good use of multiple frames? Are the generated details real? Model Issues One model for one setting Remaining Challenges 42 VDSR [Kim et al., 2016] ESPCN [Shi et al., 2016] VSRNet [Kappeler et al make good use of multiple frames? Are the generated details real? Model Issues One model for one setting Intensive parameter tuning Slow Remaining Challenges 43 Advantages Better use of sub-pixel motion
    0 码力 | 121 页 | 37.75 MB | 1 年前
    3
  • pdf文档 keras tutorial

    and the value in third dimension 128 refers the actual values of the input. This is the default setting in Keras. channel_first: channel_first is just opposite to channet_last. Here, the input values test data using scalar.transform function. This will normalize the test data as well with the same setting as that of training data. Step 4: Create the model Let us create the actual model. model =
    0 码力 | 98 页 | 1.57 MB | 1 年前
    3
  • pdf文档 PyTorch Tutorial

    PyTorchViz https://github.com/szagoruyko/pytorchviz References • Important References: • For setting up jupyter notebook on princeton ionic cluster • https://oncomputingwell.princeton.edu/2018/05/
    0 码力 | 38 页 | 4.09 MB | 1 年前
    3
  • pdf文档 Lecture 3: Logistic Regression

    Newton-Raphson method: For ℓ : Rn → R, we generalization Newton’s method to the multidi- mensional setting θ ← θ − H−1 ▽θ ℓ(θ) where H is the Hessian matrix Hi,j = ∂2ℓ(θ) ∂θi∂θj Feng Li (SDU) Logistic
    0 码力 | 29 页 | 660.51 KB | 1 年前
    3
  • pdf文档 PyTorch OpenVINO 开发实战系列教程第一篇

    开发实战系列教程 第一篇 6 点击【New Project】,输入项目名称,显示如下: 图 1-6(创建新项目) 点击【Create】按钮完成项目创建,选择文件 (File)-> 设置 (Setting) 选项: 图 1-7(设置选项) 图 1-8(设置系统 Python 解释器) 完成之后,在项目中创建一个空的 python 文件命名为 main. py,然后直接输入下面两行测试代码:
    0 码力 | 13 页 | 5.99 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 2 - Compression Techniques

    field. We will use it to demonstrate how the quantization techniques can be applied in a practical setting by leveraging the built-in support for such technologies in the real world machine learning frameworks
    0 码力 | 33 页 | 1.96 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 4 - Efficient Architectures

    embeddings and several other parameters. It crucially also supports fine-tuning the table to the task by setting the layer as trainable. However, in our case, we have initialized it to the word2vec embeddings which
    0 码力 | 53 页 | 3.92 MB | 1 年前
    3
共 11 条
  • 1
  • 2
前往
页
相关搜索词
AI模型千问qwen中文文档EfficientDeepLearningBookEDLChapterTechniquesAdvancedCompression深度学习图像视频处理技术沈小勇kerastutorialPyTorchTutorialLectureLogisticRegressionOpenVINO开发实战系列教程第一一篇第一篇Architectures
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩