AI大模型千问 qwen 中文文档TextStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True) # This will print the output in the streaming mode. generated_ids = model.generate( model_inputs, max_new_tokens=512, streamer=streamer, ) 除了使用0 码力 | 56 页 | 835.78 KB | 1 年前3
《Efficient Deep Learning Book》[EDL] Chapter 3 - Learning Techniquesscenarios. The validation set contains 10000 samples. As in the previous project, we start with setting up the required libraries, and loading the training and validation sets. We leverage the nlpaug library well as using the distillation loss function which uses the soft labels from the teacher. In this setting, the teacher is frozen, and only the student receives the gradient updates. Assume that we are shuffle=True) return model, model_history.history Now, we can train the smaller model in a distillation setting. We see that it achieves an accuracy of 81%! This is an improvement of 7.53%, which is quite a significant0 码力 | 56 页 | 18.93 MB | 1 年前3
《Efficient Deep Learning Book》[EDL] Chapter 5 - Advanced Compression Techniquesand some retained nodes have fewer connections. Let's do an exercise to convince ourselves that setting parameter values to zero indeed results in a higher compression ratio. Figure 5-1: An illustration input array using gzip compression. It returns the compressed bytes. # Sparsify the weights by setting a fraction of the weights to zero. def sparsify_smallest(w, sparsity_rate): w = w.copy() w_1d us create a random x like we saw in figure 5-6, and try to run our clustering algorithm on it. # Setting a seed here helps us reproduce the same output over multiple runs. np.random.seed(1337) # Let's0 码力 | 34 页 | 3.18 MB | 1 年前3
深度学习下的图像视频处理技术-沈小勇make good use of multiple frames? Are the generated details real? Model Issues One model for one setting Remaining Challenges 42 VDSR [Kim et al., 2016] ESPCN [Shi et al., 2016] VSRNet [Kappeler et al make good use of multiple frames? Are the generated details real? Model Issues One model for one setting Intensive parameter tuning Slow Remaining Challenges 43 Advantages Better use of sub-pixel motion0 码力 | 121 页 | 37.75 MB | 1 年前3
keras tutorialand the value in third dimension 128 refers the actual values of the input. This is the default setting in Keras. channel_first: channel_first is just opposite to channet_last. Here, the input values test data using scalar.transform function. This will normalize the test data as well with the same setting as that of training data. Step 4: Create the model Let us create the actual model. model =0 码力 | 98 页 | 1.57 MB | 1 年前3
PyTorch TutorialPyTorchViz https://github.com/szagoruyko/pytorchviz References • Important References: • For setting up jupyter notebook on princeton ionic cluster • https://oncomputingwell.princeton.edu/2018/05/0 码力 | 38 页 | 4.09 MB | 1 年前3
Lecture 3: Logistic RegressionNewton-Raphson method: For ℓ : Rn → R, we generalization Newton’s method to the multidi- mensional setting θ ← θ − H−1 ▽θ ℓ(θ) where H is the Hessian matrix Hi,j = ∂2ℓ(θ) ∂θi∂θj Feng Li (SDU) Logistic0 码力 | 29 页 | 660.51 KB | 1 年前3
PyTorch OpenVINO 开发实战系列教程第一篇开发实战系列教程 第一篇 6 点击【New Project】,输入项目名称,显示如下: 图 1-6(创建新项目) 点击【Create】按钮完成项目创建,选择文件 (File)-> 设置 (Setting) 选项: 图 1-7(设置选项) 图 1-8(设置系统 Python 解释器) 完成之后,在项目中创建一个空的 python 文件命名为 main. py,然后直接输入下面两行测试代码:0 码力 | 13 页 | 5.99 MB | 1 年前3
《Efficient Deep Learning Book》[EDL] Chapter 2 - Compression Techniquesfield. We will use it to demonstrate how the quantization techniques can be applied in a practical setting by leveraging the built-in support for such technologies in the real world machine learning frameworks0 码力 | 33 页 | 1.96 MB | 1 年前3
《Efficient Deep Learning Book》[EDL] Chapter 4 - Efficient Architecturesembeddings and several other parameters. It crucially also supports fine-tuning the table to the task by setting the layer as trainable. However, in our case, we have initialized it to the word2vec embeddings which0 码力 | 53 页 | 3.92 MB | 1 年前3
共 11 条
- 1
- 2













