积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部云计算&大数据(13)机器学习(13)

语言

全部英语(8)中文(简体)(5)

格式

全部PDF文档 PDF(13)
 
本次搜索耗时 0.033 秒,为您找到相关结果约 13 个.
  • 全部
  • 云计算&大数据
  • 机器学习
  • 全部
  • 英语
  • 中文(简体)
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 【PyTorch深度学习-龙龙老师】-测试版202112

    https://venturebeat.com/2019/01/08/baidu-announces-apollo-3-5-and-apollo-enterprise-says-it-has- over-130-partners/ 预览版202112 1.5 深度学习框架 13 是一个基于 Python 语言、定位底层运算的计算库,Theano 同时支持 GPU 和 CPU 运 算。由于 Theano
    0 码力 | 439 页 | 29.91 MB | 1 年前
    3
  • pdf文档 《TensorFlow 2项目进阶实战》1-基础理论篇:TensorFlow 2设计思想

    planned post 2.0 No support yet Supported Estimator API Limited Support Not supported Limited Support Limited Support Limited Support Limited Support SavedModel:生产级 TensorFlow 模型格式 TensorFlow 2 vs TensorFlow
    0 码力 | 40 页 | 9.01 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 4 - Efficient Architectures

    in NLP, vision, speech or other domains. However, owing to their incremental nature, they offer limited gains. Sometimes, it can be rewarding to go back to the drawing board and experiment with another Hence the name Bag of Words for this family of model architectures. In practice, you need not be limited to this architecture for solving the CBOW (or Skipgram) task. 12 The Illustrated Word2vec - https://jalammar IoT devices, etc.), where transmitting the model to the device is limited by the user’s bandwidth, and the memory available might be limited too. Let’s see what our options are: 1. The embedding table is
    0 码力 | 53 页 | 3.92 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 3 - Learning Techniques

    involvement, and for that reason can be expensive and slow. Many organizations and AI labs can only do limited data labeling because it is expensive. Moreover, the labelers need to be trained for the task such humpback whales from the pictures of their flukes2. The primary challenge with that dataset is the limited number of sample pictures for each whale. The dataset contains over 5000 individuals with more than weights and training checkpoints. A sample text is represented with a sequence of words. We have limited the sequence length to 500 words. If a sample is longer, it is truncated. A shorter sample is padded
    0 码力 | 56 页 | 18.93 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 7 - Automation

    practitioners to choose specific values to try out. The maximum choices for such parameters are limited to the chosen set. Alternatively, we can specify ranges for such hyperparameters and let the search be and for 7 trials, one possible set can be . The total number of trials in Random Search are limited by the available computational budget. They can be increased as more resources become available or that have sufficient compute resources at their disposal. However, on mobile and edge devices with limited compute capabilities, inference latencies become an important concern. Hence, the reward signal needed
    0 码力 | 33 页 | 2.48 MB | 1 年前
    3
  • pdf文档 深度学习与PyTorch入门实战 - 44. 数据增强

    数据增强 主讲人:龙良曲 Big Data ▪ The key to prevent Overfitting Sample more data? Limited Data ▪ Small network capacity ▪ Regularization ▪ Data argumentation Recap Data argumentation ▪ Flip ▪ Rotate ▪ Random Move & Crop ▪ GAN https://medium.com/nanonets/how-to-use-deep-learning-when-you-have-limited-data- part-2-data-augmentation-c26971dc8ced Flip Rotate Rotate Scale Crop Part Noise ▪ Data
    0 码力 | 18 页 | 1.56 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 1 - Introduction

    available technology. This creates an interesting problem, where the spread of these models is rate-limited by their efficiency. While efficiency can be an overloaded term, let us investigate two primary the prediction faster. Similarly, if you are training a large model from scratch on either with limited or costly training resources, developing models that are designed for Training Efficiency would help
    0 码力 | 21 页 | 3.17 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 6 - Advanced Learning Techniques - Technical Review

    from scratch for every slightly different task is not efficient either. In many cases we might be limited by our training compute budget, so this approach is a non-starter. While techniques like data-augmentation using just the labeled data. However, with such a general model our hope is that we can use these limited number of labeled examples for fine-tuning since the model already knows the general concepts about
    0 码力 | 31 页 | 4.03 MB | 1 年前
    3
  • pdf文档 Lecture Notes on Linear Regression

    error (i.e., the cost function) with respect to one training sample only. Hence, it entails very limited cost. We summarize the SGD method in Algorithm 2. In each iteration, we first randomly shu✏e the
    0 码力 | 6 页 | 455.98 KB | 1 年前
    3
  • pdf文档 深度学习下的图像视频处理技术-沈小勇

    instead of underexposed photos, and contains a small number of underexposed images that cover limited lighting conditions. Our Dataset Quantitative Comparison: Our Dataset Method PSNR SSIM HDRNet
    0 码力 | 121 页 | 37.75 MB | 1 年前
    3
共 13 条
  • 1
  • 2
前往
页
相关搜索词
PyTorch深度学习TensorFlow快速入门实战基础理论基础理论设计思想EfficientDeepLearningBookEDLChapterArchitecturesTechniquesAutomation深度学习44数据增强IntroductionAdvancedTechnicalReviewLectureNotesonLinearRegression图像视频处理技术沈小勇
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩