积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部云计算&大数据(24)机器学习(24)

语言

全部英语(13)中文(简体)(11)

格式

全部PDF文档 PDF(24)
 
本次搜索耗时 0.035 秒,为您找到相关结果约 24 个.
  • 全部
  • 云计算&大数据
  • 机器学习
  • 全部
  • 英语
  • 中文(简体)
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 keras tutorial

    symbolic math library used for creating neural networks and deep learning models. TensorFlow is very flexible and the primary benefit is distributed computing. CNTK is deep learning framework developed by data preparation phase of machine learning.  Image processing: Provides functions to convert images into NumPy array suitable for machine learning. We can use it in data preparation phase of machine Keras supports each concept. Input shape In machine learning, all type of input data like text, images or videos will be first converted into array of numbers and then feed into the algorithm. Input
    0 码力 | 98 页 | 1.57 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 3 - Learning Techniques

    transformed distribution improves the model quality and performance. For instance, a dataset of cat images would likely have the cats positioned at various angles. It would make sense to have rotational transformation during the training process. Tensorflow comes bundled with the ImageDataGenerator which can transform images during the training process, thus eliminating the need to generate samples beforehand. Next, we will the holes. Figure 3-6: Image Transformations. The source image (center) is taken from Google Open Images Dataset V6. It is authored by Mike Baird and is licensed under CC BY 2.0. The image is resized to
    0 码力 | 56 页 | 18.93 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 2 - Compression Techniques

    losing some information as a trade off. It is especially applicable for multimedia (audio, video, images) data,, where it is likely that either humans who will consume the information will not notice the quality image of a cat. The cat on the right is a lower quality compressed image. Source Both the cat images in figure 2-2 might serve their purpose equally well, but the compressed image is an order of magnitude have a task for you. You have been handed the charge of the Mars Rover! The rover is transmitting images back to earth. However, transmission costs make it infeasible to send the original image. Can we
    0 码力 | 33 页 | 1.96 MB | 1 年前
    3
  • pdf文档 《TensorFlow 2项目进阶实战》2-快速上手篇:动⼿训练模型和部署服务

    dataset This guide uses the Fashion MNIST dataset which contains 70,000 grayscale images in 10 categories. The images show individual articles of clothing at low resolution (28 by 28 pixels). https://github fashion_mnist (train_images, train_labels), (test_images, test_labels) = fashion_mnist.load_data() Preprocess data import matplotlib.pyplot as plt plt.figure() plt.imshow(train_images[0]) plt.colorbar() colorbar() plt.grid(False) plt.show() import matplotlib.pyplot as plt plt.figure() plt.imshow(train_images[1]) plt.colorbar() plt.grid(False) plt.show() Preprocess data class_names = [ 'T-shirt/top'
    0 码力 | 52 页 | 7.99 MB | 1 年前
    3
  • pdf文档 【PyTorch深度学习-龙龙老师】-测试版202112

    step=step) # 可视化测试用的图片,设置最多可视化 9 张图片 tf.summary.image("val-onebyone-images:", val_images, max_outputs=9, step=step) 运行模型程序,相应的数据将实时写入到指定文件目录中。 8.7.2 浏览器端 在运行程序时,监控数据被写入到指 SCALARS、图片可视化页面 IMAGES 等。对于这个例子,我们需要监控的训练误差和测 试准确率为标量类型数据,它的曲线在 SCALARS 页面可以查看,如图 8.4、图 8.5 所 示。 预览版202112 第 8 章 PyTorch 网络模型 16 图 8.4 训练误差曲线 图 8.5 训练准确率曲线 在 IMAGES 页面,可以查看每个 Step 的图片可视化效果,如图 step=step) # 可视化测试用的图片,设置最多可视化 9 张图片 tf.summary.image("val-onebyone-images:", val_images, max_outputs=9, step=step) 运行模型程序,相应的数据将实时写入到指定文件目录中。 8.7.2 浏览器端 在运行程序时,监控数据被写入到指
    0 码力 | 439 页 | 29.91 MB | 1 年前
    3
  • pdf文档 Lecture 1: Overview

    Recognizing hand-written words P: Percentage of words correctly classified E: Database of human-labeled images of handwritten words Feng Li (SDU) Overview September 6, 2023 10 / 57 What is Machine Learning using vision sensors P: Average distance traveled before a human-judged error E: A sequence of images and steering commands recorded while ob- serving a human driver Feng Li (SDU) Overview September expression levels for predicting tumor type, age and income for predicting amount spent, the features of images with known semantics Feng Li (SDU) Overview September 6, 2023 24 / 57 Classification and Regression
    0 码力 | 57 页 | 2.41 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 4 - Efficient Architectures

    For other domains like images, it is not practical to store all possible inputs, or even the top K frequent inputs. There isn’t a vocabulary as such to begin with, since images with a single pixel of difference this approach by using data augmentation to create similar inputs without needing labels for the images. Once the model generating the representation is trained, it can then be frozen and a new classification figure 4-22. We are going to use the Oxford-IIIT Pet dataset30 for training purposes. It contains images and segmentation masks for 37 pet categories. We will train two models using regular convolutions
    0 码力 | 53 页 | 3.92 MB | 1 年前
    3
  • pdf文档 《TensorFlow 2项目进阶实战》5-商品识别篇:使用ResNet识别你的货架商品

    应⽤用:分类训练集与验证集划分 https://www.pinlandata.com/rp2k_dataset Categoried Stats # SKUs # Train images # Test images # Total Images # Images/SKUs Low-Temperature Dairy(低温乳制品) 198 67666 7612 75278 380.19 Liquor(白酒) 167
    0 码力 | 58 页 | 23.92 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 6 - Advanced Learning Techniques - Technical Review

    fine-tuning stages. In the figure we demonstrate pre-training with a large unlabeled dataset of animal images. The pre-trained model is then fine-tuned for downstream tasks, for example object detection for org/I05-5002. Figure 6-1: Pre-training and fine-tuning stages. With an example of a large unlabeled animal images dataset which is used for pre-training. The pre-trained model is then used for fine-tuning for downstream Therefore, we can simply use e-books, Wikipedia and other sources for NLU related models, and web images & videos for computer vision models. We can then construct the final dataset for the pretext task
    0 码力 | 31 页 | 4.03 MB | 1 年前
    3
  • pdf文档 深度学习与PyTorch入门实战 - 09. 维度变换

    Squeeze/unsqueeze ▪ Transpose/t/permute ▪ Expand/repeat 2 View reshape ▪ Lost dim information 3 Flexible but prone to corrupt 4 Squeeze v.s. unsqueeze 5 unsqueeze [-a.dim()-1, a.dim()+1) [-5, 5)
    0 码力 | 16 页 | 1.66 MB | 1 年前
    3
共 24 条
  • 1
  • 2
  • 3
前往
页
相关搜索词
kerastutorialEfficientDeepLearningBookEDLChapterTechniquesCompressionTensorFlow快速入门实战上手训练模型部署服务PyTorch深度学习LectureOverviewArchitectures商品识别使用ResNet货架AdvancedTechnicalReview深度学习09维度变换
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩