积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部云计算&大数据(12)机器学习(12)

语言

全部英语(7)中文(简体)(5)

格式

全部PDF文档 PDF(12)
 
本次搜索耗时 0.021 秒,为您找到相关结果约 12 个.
  • 全部
  • 云计算&大数据
  • 机器学习
  • 全部
  • 英语
  • 中文(简体)
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 5 - Advanced Compression Techniques

    that connection). Can we do the same with neural networks? Can we optimally prune the network connections, remove extraneous nodes, etc. while retaining the model’s performance? In this chapter we introduce introduce the intuition behind sparsity, different possible methods of picking the connections and nodes to prune, and how to prune a given deep learning model to achieve storage and latency gains with a pruned version. Note that the pruned network has fewer nodes and some retained nodes have fewer connections. Let's do an exercise to convince ourselves that setting parameter values to zero indeed results
    0 码力 | 34 页 | 3.18 MB | 1 年前
    3
  • pdf文档 深度学习下的图像视频处理技术-沈小勇

    Encoder Decoder ConvL STM ???????????? = ???????????? − 1 ???????????? = ???????????? + 1 skip connections Arbitrary Input Size 49 ???????????????????????? ???????????? ????????????0 ???????????? ME SPMC Encoder Conv LSTM ???????????? = ???????????? − 1 ???????????? = ???????????? + 1 skip connections Input size: Fully convolutional Decoder Arbitrary Scale Factors 50 2× 3× 4× Parameter Free SPMC Encoder Conv LSTM ???????????? = ???????????? − 1 ???????????? = ???????????? + 1 skip connections Decoder Arbitrary Temporal Length 51 3 frames 5 frames ???????????????????????? ????????
    0 码力 | 121 页 | 37.75 MB | 1 年前
    3
  • pdf文档 QCon北京2018-《从键盘输入到神经网络--深度学习在彭博的应用》-李碧野

    edia/File:Moving_From_unknown_to_known_feature_spaces_based_on_TS-ELM_with_random_kernels_and_connections.tif https://commons.wikimedia.org/wiki/Category:Machine_learning_algorithms#/media/File:Moving _From_unknown_to_known_feature_spaces_based_on_TS-ELM_with_random_kernels_and_connections.tif https://commons.wikimedia.org/wiki/Category:Machine_learning_algorithms#/media/File:OPTICS.svg May be re-distributed
    0 码力 | 64 页 | 13.45 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 1 - Introduction

    weights while the network is being trained. Once the training concludes, the network has fewer connections which helps in reducing the network size and improving the latency. There are many criteria for process. On the left is the unpruned graph, and on the right is a pruned graph with the unimportant connections and neurons removed. Learning Techniques Learning techniques are training phase techniques to
    0 码力 | 21 页 | 3.17 MB | 1 年前
    3
  • pdf文档 Machine Learning

    feedforward network • It can be extended to recurrent neural networks (RNN) by involving feedback connections, which power many natural language applications 2 / 19 Neuron 3 / 19 Neuron (Contd.) • Neuron
    0 码力 | 19 页 | 944.40 KB | 1 年前
    3
  • pdf文档 keras tutorial

    classification  MNIST database of handwritten digits  Fashion-MNIST database of fashion articles  Boston housing price regression dataset Let us use the MNIST database of handwritten digits (or Weights. Model weights are large file so we have to download and extract the feature from ImageNet database. Some of the popular pre-trained models are listed below,  ResNet  VGG16  MobileNet
    0 码力 | 98 页 | 1.57 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 7 - Automation

    subsequent version of this controller added additional parameters for each layer to allow skip connections. Figure 7-6: The architecture of a controller which predicts convolutional networks. Each timestep
    0 码力 | 33 页 | 2.48 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 6 - Advanced Learning Techniques - Technical Review

    are not accounting for activation functions like tanh which further worsen the problem. Skip connections as introduced in the ResNet architecture is one step towards solving this problem by creating ‘residual
    0 码力 | 31 页 | 4.03 MB | 1 年前
    3
  • pdf文档 Lecture 1: Overview

    itself Example 2 T: Recognizing hand-written words P: Percentage of words correctly classified E: Database of human-labeled images of handwritten words Feng Li (SDU) Overview September 6, 2023 10 / 57 Categorize email messages as spam or legitimate P: Percentage of email messages correctly classified E: Database of emails, some with human-given labels Example 4 T: Driving on four-lane highways using vision
    0 码力 | 57 页 | 2.41 MB | 1 年前
    3
  • pdf文档 《TensorFlow 2项目进阶实战》2-快速上手篇:动⼿训练模型和部署服务

    Model 训练模型 保存和加载 h5 模型 保存和加载 SavedModel 模型 Fashion MNIST 数据集介绍 Original MNIST dataset The MNIST database of handwritten digits, available from this page, has a training set of 60,000 examples, and
    0 码力 | 52 页 | 7.99 MB | 1 年前
    3
共 12 条
  • 1
  • 2
前往
页
相关搜索词
EfficientDeepLearningBookEDLChapterAdvancedCompressionTechniques深度学习图像视频处理技术沈小勇QCon北京2018键盘输入键盘输入神经网络神经网神经网络彭博应用李碧野IntroductionMachinekerastutorialAutomationTechnicalReviewLectureOverviewTensorFlow快速入门实战上手训练模型部署服务
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩