积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部云计算&大数据(16)机器学习(16)

语言

全部英语(11)中文(简体)(5)

格式

全部PDF文档 PDF(16)
 
本次搜索耗时 0.023 秒,为您找到相关结果约 16 个.
  • 全部
  • 云计算&大数据
  • 机器学习
  • 全部
  • 英语
  • 中文(简体)
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 keras tutorial

    max_value represent the upper bound  axis represent the dimension in which the constraint to be applied. e.g. in Shape (2,3,4) axis 0 denotes first dimension, 1 denotes second dimension and 2 denotes kernel_constraint=my_constrain)) where, rate represent the rate at which the weight constrain is applied. Regularizers In machine learning, regularizers are used in the optimization phase. It applies kernel_regularizer represents the regularizer function to be applied to the kernel weights matrix.  bias_regularizer represents the regularizer function to be applied to the bias vector.  activity_regularizer
    0 码力 | 98 页 | 1.57 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 3 - Learning Techniques

    single transformation on every sample results in a dataset 2x the original size. Two transformations applied separately result in a dataset 3x the original size. Can we apply N transformations to create a dataset computations. Two transformations would require 2x100x100x3 computations. When the transformations are applied during the training process, it invariably increases the model training time. A transformation also random nature of the transformation implies that a value in range [-.1, .1] is chosen randomly and applied to the sample image. The horizontal flip transformation leverages the symmetric nature of flowers
    0 码力 | 56 页 | 18.93 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 2 - Compression Techniques

    shape of the result of the operation (XW + b) is [batch size, D2]. σ is a nonlinear function that is applied element-wise to the result of (XW + b). Some examples of the nonlinear functions are ReLU (ReLU(x) fixed-point value where the latter requires a lesser number of bits. 3. This process can also be applied to signed b-bit fixed-point integers, where the output values will be in the range [- , ]. One of in the deep learning field. We will use it to demonstrate how the quantization techniques can be applied in a practical setting by leveraging the built-in support for such technologies in the real world
    0 码力 | 33 页 | 1.96 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 7 - Automation

    using smaller datasets, early stopping or low resolution inputs etc. Early Stopping can even be applied with the HyperBand to terminate the runs sooner if they do not show improvements for a number of addition to defining a smaller search space for architecture design. AmoebaNet, on the other hand, applied evolutionary search to NASNet search space to evolve novel cell configurations. It is exciting to an embedding table to transform it to hidden_size dimensions of the RNN cell. A softmax layer is applied to the cell outputs to convert cell outputs to the probabilities of choosing an element in the state
    0 码力 | 33 页 | 2.48 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 4 - Efficient Architectures

    discussed generic techniques which are agnostic to the model architecture. These techniques can be applied in NLP, vision, speech or other domains. However, owing to their incremental nature, they offer limited which are used to compute the query, key and value matrices for input sequences. Then, a softmax is applied to the scaled dot product of query and key matrices to obtain a score matrix (figure 4-16). Finally for Pets Popular social media applications like Instagram or Snapchat have filters which can be applied over photos. For example, a mustache filter adds mustache to the faces in a photo. Have you ever
    0 码力 | 53 页 | 3.92 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 1 - Introduction

    32-bit floating point values to 8-bit unsigned / signed integers). Quantization can generally be applied to any network which has a weight matrix. It can often help reduce the model size 2 - 8x, while also the scarcity of labeled data during training. It is a collection of transformations that can be applied on the given input such that it is trivial to compute the label for the transformed input. For example
    0 码力 | 21 页 | 3.17 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 5 - Advanced Compression Techniques

    eighteenth annual ACM-SIAM symposium on Discrete algorithms (SODA '07). Society for Industrial and Applied Mathematics, USA, 1027–1035. with tf.GradientTape() as tape: loss = get_clustering_loss(x_var, a dummy dense fully-connected layer Now that we have looked at how to compress a given tensor, applied it to the Mars Rover problem, wouldn’t it be great if we can also use clustering to compress a dense
    0 码力 | 34 页 | 3.18 MB | 1 年前
    3
  • pdf文档 深度学习与PyTorch入门实战 - 54. AutoEncoder自编码器

    data ▪ Compression, denoising, super-resolution … Auto-Encoders https://towardsdatascience.com/applied-deep-learning-part-3-autoencoders- 1c083af4d798 https://towardsdatascience.com/a-wizards-guide-t
    0 码力 | 29 页 | 3.49 MB | 1 年前
    3
  • pdf文档 Experiment 2: Logistic Regression and Newton's Method

    to perform this transformation, since both gradient ascent algorithm and Newton’s method can be applied to resolve maximization problems. 2 One approach to minimize the above objective function is gradient
    0 码力 | 4 页 | 196.41 KB | 1 年前
    3
  • pdf文档 机器学习课程-温州大学-03机器学习-逻辑回归

    ? log 1 − ℎ ? ? + ? 2? ෍ ?=1 ? ?? 2 22 参考文献 [1] HOSMER D W, LEMESHOW S, STURDIVANT R X. Applied logistic regression[M]. New Jersey: Wiley New York.2000. [2] Andrew Ng. Machine Learning[EB/OL]
    0 码力 | 23 页 | 1.20 MB | 1 年前
    3
共 16 条
  • 1
  • 2
前往
页
相关搜索词
kerastutorialEfficientDeepLearningBookEDLChapterTechniquesCompressionAutomationArchitecturesIntroductionAdvanced深度学习PyTorch入门实战54AutoEncoder编码码器编码器ExperimentLogisticRegressionandNewtonMethod机器课程温州大学03逻辑回归
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩