积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部云计算&大数据(12)机器学习(12)

语言

全部中文(简体)(11)英语(1)

格式

全部PDF文档 PDF(12)
 
本次搜索耗时 0.022 秒,为您找到相关结果约 12 个.
  • 全部
  • 云计算&大数据
  • 机器学习
  • 全部
  • 中文(简体)
  • 英语
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 基本数据类型

    基本数据类型 主讲人:龙良曲 All is about Tensor python PyTorch Int IntTensor of size() float FloatTensor of size() Int array IntTensor of size [d1, d2 ,…] Float array FloatTensor of size [d1, d2, …] string
    0 码力 | 16 页 | 1.09 MB | 1 年前
    3
  • pdf文档 PyTorch OpenVINO 开发实战系列教程第一篇

    tensor([[2., 3.], [4., 5.]]) torch.float32 其中 torch.Tensor 是 torch.FloatTensor 的别名,所以默认的 数据类型是 flaot32,这点从 a.dtype 的打印结果上也得了印 证。此外 torch.Tensor 函数还支持从 Numpy 数组直接转换 为张量数据,这种定义声明张量数据的代码如下: b [3, 4], [5, 6], [7, 8]], dtype=torch.int32) 根据数据类型的自动识别,转换为 torch.int32 的数据类型。 除了直接声明常量数组的方式,Pytorch 框架还支持类似 Matlab 方式的数组初始化方式,可以定义数组的维度,然后 初始化为零,相关的演示代码如下: c [12.4000]]) 上面得代码中 x 是 a 加 b 的结果,y 是 a 加 b 之和与 c 的矩阵 乘法的最终输出结果。 ● 数据类型转换 在实际的开发过程中,我们经常需要在不同类型的数据张量中 切换,因此数据类型转换函数也是必修的,代码演示如下: m = torch.tensor([1.,2.,3.,4.,5.,6], dtype=torch.float32)
    0 码力 | 13 页 | 5.99 MB | 1 年前
    3
  • pdf文档 Keras: 基于 Python 的深度学习库

    所 使 用 的 默 认 值 图 像 数 据 格 式 (channel_last 或 channels_first)。 • 用于防止在某些操作中被零除的 epsilon 模糊因子。 • 默认浮点数据类型。 • 默认后端。详见 backend 文档。 同 样, 缓 存 的 数 据 集 文 件 (如 使 用 get_file() 下 载 的 文 件) 默 认 存 储 在 $HOME/.keras/datasets/ 32) 表明任意批次大小的 32 维向量。 • name: 一个可选的层的名称的字符串。在一个模型中应该是唯一的(不可以重用一个名字 两次)。如未提供,将自动生成。 • dtype: 输入所期望的数据类型,字符串表示 (float32, float64, int32…) • sparse: 一个布尔值,指明需要创建的占位符是否是稀疏的。 • tensor: 可选的可封装到 Input 层的现有 dtype=None, name=None) 实例化一个全零变量并返回它。 参数 • shape: 整数元组,返回的 Keras 变量的尺寸。 • dtype: 字符串,返回的 Keras 变量的数据类型。 • name: 字符串,返回的 Keras 变量的名称。 返回 一个变量(包括 Keras 元数据),用 0.0 填充。请注意,如果 shape 是符号化的,我们不能 返回一个变量,而会返回一个动态尺寸的张量。
    0 码力 | 257 页 | 1.19 MB | 1 年前
    3
  • pdf文档 机器学习课程-温州大学-01机器学习-引言

    安装过程照着提示一步步操作就可以了。 注意:安装路径尽量不使用带有 中文或空格 的目录,这样在之后的使用过程 中减少一些莫名的错误。 Python 的环境的安装 54 Python 的主要数据类型 ⚫字符串 ⚫整数与浮点数 ⚫布尔值 ⚫日期时间 ⚫其它 55 Python 的数据结构 ⚫列表(list) 用来存储一连串元素的容器,列表用[ ]来表示,其中元素的类型可不相同。 ; 4、实用的线性代数、傅里叶变换和随机数生成函数。numpy和稀疏矩阵运算包scipy 配合使用更加方便。 NumPy(Numeric Python)提供了许多高级的数值编程工具,如:矩阵数据类型、 矢量处理,以及精密的运算库。专为进行严格的数字处理而产生。多为很多大型金融 公司使用,以及核心的科学计算组织如:Lawrence Livermore,NASA用其处理一些 本来使用C++ 析环境的重要因素之一。 63 Python模块-Pandas ⚫ 基本数据结构 Series 一维数据结构,包含行索 引和数据两个部分 DataFrame 二维数据结构,包含 带索引的多列数据, 各列的数据类型可能 不同 64 Python模块-Pandas ⚫ 数据索引 df[5:10] 通过切片方式选取多行 df[col_label] or df.col_label 选取列 df.loc[row_label
    0 码力 | 78 页 | 3.69 MB | 1 年前
    3
  • pdf文档 机器学习课程-温州大学-01深度学习-引言

    安装过程照着提示一步步操作就可以了。 注意:安装路径尽量不使用带有 中文或空格 的目录,这样在之后的使用过程 中减少一些莫名的错误。 Python 的环境的安装 55 Python 的主要数据类型 ⚫字符串 ⚫整数与浮点数 ⚫布尔值 ⚫日期时间 ⚫其它 56 Python 的数据结构 ⚫列表(list) 用来存储一连串元素的容器,列表用[ ]来表示,其中元素的类型可不相同。 ; 4、实用的线性代数、傅里叶变换和随机数生成函数。numpy和稀疏矩阵运算包scipy 配合使用更加方便。 NumPy(Numeric Python)提供了许多高级的数值编程工具,如:矩阵数据类型、 矢量处理,以及精密的运算库。专为进行严格的数字处理而产生。多为很多大型金融 公司使用,以及核心的科学计算组织如:Lawrence Livermore,NASA用其处理一些 本来使用C++ 析环境的重要因素之一。 64 Python模块-Pandas ⚫ 基本数据结构 Series 一维数据结构,包含行索 引和数据两个部分 DataFrame 二维数据结构,包含 带索引的多列数据, 各列的数据类型可能 不同 65 Python模块-Pandas ⚫ 数据索引 df[5:10] 通过切片方式选取多行 df[col_label] or df.col_label 选取列 df.loc[row_label
    0 码力 | 80 页 | 5.38 MB | 1 年前
    3
  • pdf文档 《TensorFlow 快速入门与实战》5-实战TensorFlow手写体数字识别

    MNIST 数据集中的图像都是256阶灰度图,即灰度值 0 表示白色(背景),255 表示 黑色(前景),使用取值为[0,255]的uint8数据类型表示图像。为了加速训练,我 们需要做数据规范化,将灰度值缩放为[0,1]的float32数据类型。 255 0 MNIST 手写体数字介绍 下载和读取 MNIST 数据集 一个曾广泛使用(如 chapter-2/basic-model
    0 码力 | 38 页 | 1.82 MB | 1 年前
    3
  • pdf文档 机器学习课程-温州大学-numpy使用总结

    创建n维数组(矩阵) · 对数组进行函数运算 · 数值积分 · 线性代数运算 · 傅里叶变换 · 随机数产生 ······ NumPy是什么? 5 NumPy提供了许多高级的数值编程工具,如:矩阵数据类型、矢量处 理,以及精密的运算库。专为进行严格的数字处理而产生。多为很多大 型金融公司使用,以及核心的科学计算组织如:Lawrence Livermore, NASA 用其处理一些本来使用 C++,Fortran 中的元素可以是任何对象,所以浪费了CPU运算时间和内存。 NumPy诞生为了弥补这些缺陷。它提供了两种基本的对象: ndarray:全称(n-dimensional array object)是储存单一数据类型的 多维数组。 ufunc:全称(universal function object)它是一种能够对数组进行处 理的函数。 NumPy的官方文档: https://docs.scipy.
    0 码力 | 49 页 | 1.52 MB | 1 年前
    3
  • pdf文档 机器学习课程-温州大学-机器学习项目流程

    探索性数据分析(EDA) 这幅图我们可以看到建筑类型对 Energy Star Score有重大影 响。 办公楼往往有较高的分数, 而酒店的分数较低。 16 探索性数据分析(EDA) 现在我们有了正确的列数据类型,我们可以通过查看每列中缺失值的 百分比来开始分析。 当我们进行探索性数据分析时,缺失的值很好, 但是必须使用机器学习方法进行填写。 17 探索性数据分析(EDA) Pairs Plot是一次检查多个变
    0 码力 | 26 页 | 1.53 MB | 1 年前
    3
  • pdf文档 《TensorFlow 快速入门与实战》4-实战TensorFlow房价预测

    Pandas 是一个 BSD 开源协议许可的,面向 Python 用户的高性能和易于上手的数 据结构化和数据分析工具。 数据框(Data Frame)是一个二维带标记的数据结构,每列(column)数据类型 可以不同。我们可以将其当作电子表格或数据库表。 数据读入 pandas.read_csv 方法实现了快速读取 CSV(comma-separated) 文件到数据框的功能。 数据可视化库:matplotlib
    0 码力 | 46 页 | 5.71 MB | 1 年前
    3
  • pdf文档 机器学习课程-温州大学-03深度学习-PyTorch入门

    GPU ) , requires_grad(是否需要求导)等设置参数。 1.Tensors张量的概念 9  Tensor与NumPy的函数对比 . 操作类别 Numpy PyTorch 数据类型 np.ndarray torch.Tensor np.float32 torch.float32; torch.float np.float64 torch.float64; torch.double
    0 码力 | 40 页 | 1.64 MB | 1 年前
    3
共 12 条
  • 1
  • 2
前往
页
相关搜索词
深度学习PyTorch入门实战06基本数据类型数据类型OpenVINO开发系列教程第一一篇第一篇Keras基于Python机器课程温州大学01引言TensorFlow快速手写手写体数字识别numpy使用总结项目流程房价预测03
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩