PyTorch OpenVINO 开发实战系列教程第一篇Pytorch 是开放源代码的机器学习框架,目的是加速从研究 原型到产品开发的过程。其 SDK 主要基于 Python 语言,而 Python 语言作为流行的人工智能开发语言一直很受研究者与 开发者的欢迎。其模型训练支持CPU与GPU、支持分布式训练、 云部署、针对深度学习特定领域有不同的丰富的扩展库。 1.1.1 Pytorch 历史 Pytorch 在 2016 年由 facebook 2018 年 facebook 又把 caffe2 项目整合到 pytorch 框架中,这样 pytorch 就进一步 整合原来 caffe 开发者生态社区,因为其开发效率高、特别容 易构建各种复杂的深度学习模型网络,因此很快得到大量人工 智能开发者的认可与追捧,也成为工业界最受欢迎的深度学习 框架之一。 Pytorch 发展至今,其版本跟功能几经迭代,针对不同的场景 任务分裂出不同的 任务分裂出不同的分支扩展库,比如针对自然语言处理(NLP) 的 torchtext、针对计算机视觉的 torchvision、针对语音处理 的 torchaudio,这些库支持快速模型训练与演示应用,可以 帮助开发者快速搭建原型演示。此外在移动端支持、模型部署 的压缩、量化、服务器端云化部署、推理端 SDK 支持等方面 Pytorch 也在不断的演化改进。 在操作系统与 SDK 支持方面,Pytorch 从最初的单纯支持0 码力 | 13 页 | 5.99 MB | 1 年前3
阿里云上深度学习建模实践-程孟力在线服务(EAS) 生态市场 开发者工具 • CLI • PAIFlow • OpenAPI AI能力 体验中心 开源 PAI平台(Platform of Artificial Intelligence) Deep Learning Container 数据量大而全 先进的模型结构 业务场景复杂 计算力强、性价比高 提供 支撑 支撑 支撑 促进 促进 开源生态 系统 硬件 硬件 模型 生态系统 外循环 内循环 贡献 对接 PAI平台的优势 1. 机器学习PAI: https://help.aliyun.com/product/30347.html 2. 阿里灵杰:https://www.zhihu.com/org/a-li-ling-jie 3. EasyRec: https://github.com/alibaba/EasyRec 4. 推荐解决方案:0 码力 | 40 页 | 8.51 MB | 1 年前3
【PyTorch深度学习-龙龙老师】-测试版202112式,更适合算法设计和开发;静态图模式运行效率高,更适合算法部署。然而并不全是如 此,在很多任务上,PyTorch 的速度都优于 TensorFlow,而且 PyTorch 在工业部署上也有成 熟的 ONNX 生态,丝毫不逊色于 TensorFlow。 1.5.3 功能演示 深度学习的核心是算法的设计思想,深度学习框架只是我们实现算法的工具。对工具 的理解有助于加深对算法的掌握程度。下面将演示 目前常用的深度学习框架,如 PyTorch (Paszke, 以及其他人, 2019)、TensorFlow 等, 都可以非常方便地通过数行代码自动下载、管理和加载 MNIST 数据集,不需要开发者额 外编写代码,使用起来非常方便。这里利用 PyTorch 附带的 torchvision 库自动在线下载 MNIST 数据集,并转换为 PyTorch 的数据对象 DataLoader 格式。代码如下: [1, 2, 3]]) 此时?的 shape 变为[2,3],可以直接与?@?进行相加运算,从而获得线性层的输出张量, 这才是严格意义上的运算过程。实际上,上述插入维度和复制数据的步骤并不需要开发者 手动执行,PyTorch 会自动完成,这是下一节要介绍的自动扩展功能。 考虑另一个例子,输入张量为 2 行 2 列的矩阵,创建张量如下: In [82]: x = torch.arange(4)0 码力 | 439 页 | 29.91 MB | 1 年前3
微博在线机器学习和深度学习实践-黄波1.推荐篇 2.平台篇 3.总结篇 1 目录 • 推荐场景 • 推荐 • 在线机器学习 • 深度学习 • 平台背景 • 平台架构 • 平台效果 • 微博技术里程碑 • 微博业务生态 推荐篇 APPLICATION 推荐场景、在线机器学习和深度学习 11 1 推荐场景 • 信息流 热门流 视频流 关系流 • 推荐流 图片推荐流 正文推荐流 视频推荐流 1 推荐场景 建设平台(业务A) 业务开发 模型开发 特征工程 建设 平台 接入平台(业务B) 接入 平台 业务开发 模型开发 特征工程 3 平台效果 总结篇 SUMMARY 微博技术里程碑和业务生态 13 2008年 Hadoop 2009年 微博Feed 2011年 开放平台 2013年 大数据 2015年 机器学习 2016年 机器学习平台 2017年 大规模机器学习 深度学习平台 微博技术里程碑 关注/兴趣 分发/推荐 生产/传播 优质内容 普通用户 优质用户 潜力 挖掘 关系 拓展 内容 理解 兴趣 挖掘 内容 生产 内容 组织 AI 2 微博业务生态 以微博之力,让世界更美 谢谢!0 码力 | 36 页 | 16.69 MB | 1 年前3
深度学习与PyTorch入门实战 - 01. 初见PyTorch-part-i-cff0e3841750 静态图 综合评价 PyTorch TensorFlow 1 TensorFlow 2 性能 生态 工业界 学术界 上手难度 易用性 兼容性 发展前景 0 小结 VS PyTorch生态 TorchVision PyTorch能做什么? • GPU加速 • 自动求导 • 常用网络层 1. GPU加速 2. 自动求导0 码力 | 19 页 | 1.06 MB | 1 年前3
《TensorFlow 2项目进阶实战》1-基础理论篇:TensorFlow 2设计思想TensorFlow - Infra of AI TensorFlow 2 设计原则 TensorFlow 2 简化概念 海纳百川 构建生态 TensorFlow 2 简化概念 1.0 2.0 TensorFlow 2 海纳百川 2.0 TensorFlow 2 构建生态 2.0 TensorFlow 生产级AI方案 TensorFlow 2 核心模块 TensorFlow 2 核心模块概览0 码力 | 40 页 | 9.01 MB | 1 年前3
Keras: 基于 Python 的深度学习库. 6 2.4 Keras 支持多个后端引擎,并且不会将你锁定到一个生态系统中 . . . . . . . . . . 6 2.5 Keras 拥有强大的多 GPU 和分布式训练支持 . . . . . . . . . . . . . . . . . . . . . . 6 2.6 Keras 的发展得到深度学习生态系统中的关键公司的支持 . . . . . . . . . . . . . Flask app)中。 • 在 JVM,通过 SkyMind 提供的 DL4J 模型导入。 • 在 Raspberry Pi 树莓派上。 2.4 Keras 支持多个后端引擎,并且不会将你锁定到一个生态系统中 你的 Keras 模型可以基于不同的深度学习后端开发。重要的是,任何仅利用内置层构建的 Keras 模型,都可以在所有这些后端中移植:用一种后端训练模型,再将它载入另一种后端中(比 如为了发布)。支持的后端有: GPU 集群上训练。 • Keras 可以在 Spark(通过 CERN 的 Dist-Keras)和 Elephas 上运行。 为什么选择 KERAS? 7 2.6 Keras 的发展得到深度学习生态系统中的关键公司的支持 Keras 的开发主要由谷歌支持,Keras API 以 tf.keras 的形式包装在 TensorFlow 中。此外, 微软维护着 Keras 的 CNTK 后端。亚马逊0 码力 | 257 页 | 1.19 MB | 1 年前3
经典算法与人工智能在外卖物流调度中的应用同单量不同骑士数量 下配送体验,预估在 天气变化、运营活动 订单激增等情况下合 理骑士人数 商圈健康度诊断 综合分析商圈内用户、 商户及骑士,提供线 下运营方案指导 寻宝系统 4 总结—物流系统生态是保证用户良好物流服务体验的基石 22 时光机 | 回顾过去 实时监控 | 监控现在 仿真系统 | 预测未来 寻宝系统 | 指导业务 调度系统 提纲 23 外卖订单的智能 调度系统0 码力 | 28 页 | 6.86 MB | 1 年前3
QCon2018北京-基于深度学习的视频结构化实践-姚唐仁AI实验室首席架构师/姚唐仁� • 围绕海量数据提供创新的云服务,帮助客户缩短想法到产品的距离 • 创立6年,每年超过300%的业绩增长 • 已完成5轮融资,累计超过20亿 • 长期服务70多万企业用户和开发者 • 文件数超过2000亿,每日新增文件20亿 • 覆盖全球300个节点 • 覆盖金融、公安、广电媒体、互联网等行业 • 国内领先的云计算厂商 关于七牛云 智能多媒体服务 数据洞察0 码力 | 39 页 | 38.01 MB | 1 年前3
QCon北京2018-《未来都市--智慧城市与基于深度学习的机器视觉》-陈宇恒• 我们是谁 • 智慧城市中机器视觉应用 • 我们是如何构建城市级AI+智慧城市系统 • 大规模深度学习实战系统的几点经验 l商汤科技联合创始人,架构师 lC++/Go/Rust/Ruby开发者 l多个开源项目贡献者 lNIPS国际会议论文作者 @chyh1990 2017.6 2016.3 2015.11 2014.6 2013.3 2011年中 2017.3 20160 码力 | 23 页 | 9.26 MB | 1 年前3
共 17 条
- 1
- 2













