Visdom可视化Visdom可视化 主讲人:龙良曲 TensorBoard? TensorboardX ▪ pip install tensorboardX TensorboardX Visdom from Facebook Step 1. install Step2. run server damon Step2. run server damon install from source lines:0 码力 | 17 页 | 1.47 MB | 1 年前3
谭国富:深度学习在图像审核的应用深度学习在图像审核的应用 腾讯优图实验室 谭国富 http://open.youtu.qq.com SACC2017 优图团队立足于社交网络大平台,借助社交业务积累 的海量人脸、图片、音乐等数据,专注在人脸、图像、 音乐、语音、机器学习等领域开展技术研究,并积极 推动研究成果在业务中落地产生价值。 关于优图实验室 人脸识别 图像识别 音频识别 SACC2017 目录 01 腾讯优图内容审核能力介绍 性感图片:又称疑似图片,不含直接色情 内容但有一定的诱惑性,建议进行人工审 核; Ø 正常图片:不含不良内容的正常图片。 色情图片 性感图片 SACC2017 内容审核 – 图像暴恐内容识别 l 识别应用:腾讯云,微云,QQ群 Ø 对于输入的图片,系统将会通过对其内容的识别 分析给出其属于武装份子、管制刀具、枪支弹药、 人群聚集、火灾、血腥、极端主义或恐怖主义标 识的概率,通过其概率最大的类型,判断其图片 政治人物识别 无版权人物识别 检索结果:奥巴马 相似度:98% 政治人物 不在黑名单 检索结果:林志玲 相似度:99% 在版权库 SACC2017 图片场景识别 l 社交图像分类应用:微云,相册管家 Ø 标签体系:面向社交领域的热词标签200余种, 涵盖人物、风景、人造物、 建筑、动植物、食物等9个大类 。 Ø 技术指标:20个类别平均准确率MAP>90%以上,200种MAP>63%以上,0 码力 | 32 页 | 5.17 MB | 1 年前3
深度学习在电子商务中的应用1 深度学习在电商搜索和聊天机器人中的应用 探索 SPEAKER / 程进兴 2017年4月 2 3 苏宁国际美国硅谷研究院 苏宁美国硅谷研究院创 建于2013年11月,其宗旨是建立 高科技人才和专利的蓄水池,推 动苏宁持续地创新和转型,为用 户提供简约完美的用户体验。 硅谷研究院由来自云计 算、大数据、人工智能及深度学 习等不同专业背景的工程师、数 据科学家及分析师组成。目前包 含人工智能、大数据和创新三个 实验室。 4 程进兴,苏宁美国研究院技术总监,斯坦福大学 博士,清华大学本科。 曾在甲骨文,雅虎,微软, 沃尔玛实验室等多家公司从事搜索,广告,大数 据分析,机器学习,人工智能应用等方面的研发 工作。在此期间,发表了10多篇相关领域的研究 论文,并有10多项相关领域的专利。 业余爱好: 骑行 个人简介 电子邮箱: jim.cheng@ususing.com 5 议程 理发器, 理发推子, 电推子 血糖计, 血糖仪 山地车,死飞,自行车,碟刹,折叠车,公路车, 单车 • 解决方案 同义词 ? 归一化 ? 預報 =》预报, 五岁 =》 5岁 目前商品搜索中的一些问题 7 人工智能/深度学习在搜索中的应用:网页/电商搜索 • 基于深度学习的(Query, Document)分数是Google搜索引擎中第3重要的排序信 号 • 亚马逊(Amazon/A9)电子商务搜索引擎中,0 码力 | 27 页 | 1.98 MB | 1 年前3
搜狗深度学习技术在广告推荐领域的应用搜狗深度学习技术在广告推荐领域的应用 舒鹏 目录 CONTENTS 01 搜索广告背景知识 02 深度学习在搜狗搜索广告的一些应用 03 基于多模型融合的CTR预估 04 若干思考 搜索广告背景知识 信息需求 用户查询 查询理解 广告召回 点击率预估 排序计价 结果展示 点击及后续行为 广告库 日志收集 展示日志 点击日志 深度学习在搜狗搜索广告的一些应用 无需分词:基于字符粒度表达的问答系统设计 Sogou Inc 文本相关性计算 文本相关性计算 深度学习在搜狗搜索广告的一些应用 LSTM LSTM LSTM 中长款 牛仔 外套 ResNet-50层 CNN-LSTM Encoder CNN CNN 中长款牛仔外套 Cosine-Loss 广告物料推荐 深度学习在搜狗搜索广告的一些应用 方向 用途 相关技术 图像理解 图片物料推荐 CNN 文本相关性 广告召回、创意生成 Table DNN Model Feature LR Model Feature 特 征 池 模型效果评估 AUC 上线收益 是否一致? Survival Bias 特征覆盖率 并行化训练 并行化训练 诉求 加大数据量,提 升模型稳定性 加大数据量,提 升模型收益 方案 MxNet支持多机 多卡, 使用成本低 构 建 多 机 多 卡 GPU集群,优化0 码力 | 22 页 | 1.60 MB | 1 年前3
Chatbots 中对话式交互系统的分析与应用subbranch=中关村店) request(phone, name) 理解模块 对话管理 模块 产生模块 Spoken Language Understanding (SLU) • 结构化表示自然语言的语义: • act1 (slot1=value1, slot2=value2,…), act2 (slot1=value1,…), … • acttype, slot, value的取值范围已预先定义好 Gašić (2014) 语言生成 Natural Language Generation (NLG) • 把结构化的系统动作翻译成人类的语言 Steve Young (2016) 语言生成 Natural Language Generation (NLG) • 把结构化的系统动作翻译成人类的语言 • Semantically Conditioned LSTM (SC-LSTM) Tsung-Hsien Tsung-Hsien Wen (2016) 语言生成 Natural Language Generation (NLG) • 把结构化的系统动作翻译成人类的语言 • Semantically Conditioned LSTM (SC-LSTM) Tsung-Hsien Wen (2016) Task-Bot: 其他框架 • Microsoft: End-to-End Task-Completion0 码力 | 39 页 | 2.24 MB | 1 年前3
如何利用深度学习提高高精地图生产的自动化率-邹亮0 码力 | 34 页 | 56.04 MB | 1 年前3
QCon2018北京-基于深度学习的视频结构化实践-姚唐仁《基于深度学习的视频结构化实践》 七牛云 AI实验室首席架构师/姚唐仁� • 围绕海量数据提供创新的云服务,帮助客户缩短想法到产品的距离 • 创立6年,每年超过300%的业绩增长 • 已完成5轮融资,累计超过20亿 • 长期服务70多万企业用户和开发者 • 文件数超过2000亿,每日新增文件20亿 • 覆盖全球300个节点 • 覆盖金融、公安、广电媒体、互联网等行业 视觉-最重要的信息感知 2017中国网络视频用户情况 ����2017������������� 传统视频摘要 vs AI视频结构化 内容不完整 依赖经验 实时性差 时效性差 识别范围广 效率高 可迭代 创新基础 传统手工摘要 AI视频结构化 视频结构化场景 视频分解 基础模型要素 ��1�01:02:03-01:10:05� ��1����� �� �� ������ ��PA� ������ 3 4 5 6 ���L ������ ��PA� ����� ���L ��������� ������L 大规模视频训练框架 结构化策略 ���� ������ ���� ���� 主题分类-特征提取 DPN SENet ResNeXt NASNet 主题分类-模型训练 模型融合 a) Early fusion0 码力 | 39 页 | 38.01 MB | 1 年前3
李东亮:云端图像技术的深度学习模型与应用云端图像技术的深度学习模型与应用 李东亮 360 人工智能研究院 lidongliang@360.cn 2017.10.20 SACC2017 360电脑安全产品 月活跃数达到4.42亿 360手机安全产品 移动端用户总数已达约1.49亿 360浏览器 月活跃用户数量为3.03亿 360导航 日均独立访问用户为8900万人 日均点击量约为4.51亿次 360搜索 稳定拥有35%以上的市场份额0 码力 | 26 页 | 3.69 MB | 1 年前3
房源质量打分中深度学习应用及算法优化-周玉驰房客人关系图谱 扫一扫二维码图案,加我微信 2019 KE.COM ALL COPYRIGHTS RESERVED 4 目录 为什么要做AI选房 如何做AI选房 模型演变历程 实践应用 总结&思考 2019 KE.COM ALL COPYRIGHTS RESERVED 5 为什么做AI选房? 2019 KE.COM ALL COPYRIGHTS RESERVED 6 需要强大的房源质量盘点工具 • 找到好房难度大,成本高 挑战 200万 贝壳全部房源 2019 KE.COM ALL COPYRIGHTS RESERVED 7 目标&价值 平台 提升去化率 经纪人 提升效率和业绩 客户 降低看房成本 业主 缩减销售时长 市场需求恒定,优先成交好房 核心思想 选出好房 核心问题 提升带看效率 加速成交 核心价值 KE.COM ALL COPYRIGHTS RESERVED 16 v1.0 - 初版模型系统概览 • 房源特征 静态特征 时序特征 • 特征处理 特征提取 特征组合 离散化 • 模型预测 XGBoost • 分数映射 房源质量分数 M 2019 KE.COM ALL COPYRIGHTS RESERVED 17 房源特征 6大方向设计了90维特征0 码力 | 48 页 | 3.75 MB | 1 年前3
超大规模深度学习在美团的应用-余建平超大规模深度学习在美团的应用 余建平 美团点评用户平台研究员 自我介绍 自我介绍 2011年硕士毕业于南京大学计算机科学与技术系。毕业后曾在百度凤巢从事机器学习 工程相关的工作,加入美团后,负责超大规模机器学习系统,从无到有搭建起支持千亿 级别规模的深度学习系统,与推荐、搜索、广告业务深度合作,在算法上提供从召回到 排序的全系统优化方案,在工程上提供离线、近线、在线的全流程解决方案。 超大规模机器学习MLX MLX平台目标 MLX平台架构 • 模型场景应用 召回模型 排序模型 目录 • 美团超大规模模型场景简介 • 超大规模机器学习MLX MLX平台目标 MLX平台架构 • 模型场景应用 召回模型 排序模型 美团超大规模模型应用场景 美团推荐 美团搜索 美团广告 美团应用场景简介 • 场景特点 亿级的用户,千万级的O2O商品 海量的用户行为,完整的交易闭环 • 模型场景应用 召回模型 排序模型 超大规模模型的有效性 • VC维理论 描述模型的学习能力:VC维越大模型越复杂,学习能力越强 机器学习能力 = 数据 + 特征 + 模型 • 数据 海量数据: 美团的亿级用户、千万级POI • 特征 大规模离散特征 > 小规模泛化特征 • 模型 DNN > 树模型 > LR 美团超大规模模型应用场景 • 可扩展的机器学习架构0 码力 | 41 页 | 5.96 MB | 1 年前3
共 71 条
- 1
- 2
- 3
- 4
- 5
- 6
- 8













