积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部云计算&大数据(20)机器学习(20)

语言

全部中文(简体)(19)英语(1)

格式

全部PDF文档 PDF(20)
 
本次搜索耗时 0.024 秒,为您找到相关结果约 20 个.
  • 全部
  • 云计算&大数据
  • 机器学习
  • 全部
  • 中文(简体)
  • 英语
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 《TensorFlow 2项目进阶实战》2-快速上手篇:动⼿训练模型和部署服务

    TensorFlow 2 项目实战进阶 扫码试看/订阅 《TensorFlow 2 项目进阶实战》视频课程 快速上手篇:动⼿训练模型和部署服务 • TensorFlow 2 开发环境搭建 • 使用 tf.keras.datasets 加载数据 • 使用 tf.data.Dataset 加载数据 • 使用 tf.keras.Model 管理模型 • Fashion MNIST 数据集介绍
    0 码力 | 52 页 | 7.99 MB | 1 年前
    3
  • pdf文档 TensorFlow on Yarn:深度学习遇上大数据

    作业的统⼀管理、状态跟踪� • 资源组(Schedule Pool)的划分� • 作业进程的资源隔离� Yarn能解决什么问题:� TensorFlow on Yarn设计 • 同时支持单机和分布式TensorFlow程序� • 支持GPU资源管理和调度� • 不再需要⼿动配置CluserSpec信息,仅需要设置work 和ps的数量� • 训练数据和训练模型基于HDFS统⼀存储� TensorFlow on Yarn技术细节揭秘 启动Tensorboard服务:� TensorFlow on Yarn技术细节揭秘 降低已有tensorflow程序迁移成本:� (1)单机模式 不需要修改代码 (2)分布式模式(最多修改三行代码) cluster = !.train.ClusterSpec(json.loads(os.environ[“TF_CLUSTER_DEF”]))
    0 码力 | 32 页 | 4.06 MB | 1 年前
    3
  • pdf文档 QCon北京2018-《未来都市--智慧城市与基于深度学习的机器视觉》-陈宇恒

    大型客户伙伴 共同发展 AI+金融 AI+智慧城市 AI+芯片 AI+无人驾驶 AI+智能手机 AI+医疗图像 AI+智慧城市:以智能安防场景为例 特征向量 AI+智慧城市 2015-2017 l单机、简易分布式人脸检测、跟踪、比对平台 l处理数十路到数百路监控摄像头数据 l千万级别深度学习特征检索 l行业试水 2018-2019 l云原生Cloud-Native超大规模视图存储、处理、检
    0 码力 | 23 页 | 9.26 MB | 1 年前
    3
  • pdf文档 Keras: 基于 Python 的深度学习库

    及的次数位居第二。Keras 还被大型科学组织的研究人员采用,特别是 CERN 和 NASA。 2.3 Keras 可以轻松将模型转化为产品 与任何其他深度学习框架相比,你的 Keras 模型可以轻松部署在更广泛的平台上: • 在 iOS 上,通过 Apple’s CoreML(苹果为 Keras 提供官方支持)。这里有一个教程。 • 在安卓上,通过 TensorFlow Android runtime,例如:Not multi_gpu_model(model, gpus=None, cpu_merge=True, cpu_relocation=False) 将模型复制到不同的 GPU 上。 具体来说,该功能实现了单机多 GPU 数据并行性。它的工作原理如下: 工具 240 • 将模型的输入分成多个子批次。 • 在每个子批次上应用模型副本。每个模型副本都在专用 GPU 上执行。 • 将结果(在 CPU 上)连接成一个大批量。
    0 码力 | 257 页 | 1.19 MB | 1 年前
    3
  • pdf文档 AI大模型千问 qwen 中文文档

    3 Qwen 1.2 快速开始 本指南帮助您快速上手 Qwen1.5 的使用,并提供了如下示例:Hugging Face Transformers 以及 ModelScope 和 vLLM 在部署时的应用实例。 1.2.1 Hugging Face Transformers & ModelScope 要快速上手 Qwen1.5,我们建议您首先尝试使用 transformers 进行推理。请确保已安装了 model.generate( model_inputs.input_ids, max_new_tokens=512, streamer=streamer, ) 1.2.2 使用 vLLM 部署 要部署 Qwen1.5,我们建议您使用 vLLM。vLLM 是一个用于 LLM 推理和服务的快速且易于使用的框架。以 下,我们将展示如何使用 vLLM 构建一个与 OpenAI API 兼容的 API save_quantized(quant_path, safetensors=True, shard_size="4GB") tokenizer.save_pretrained(quant_path) 然后你就可以得到一个可以用于部署的 AWQ 量化模型。玩得开心! 1.8 GPTQ GPTQ 是一种针对类 GPT 大型语言模型的量化方法,它基于近似二阶信息进行一次性权重量化。在本文 档中,我们将向您展示如何使用 transformers
    0 码力 | 56 页 | 835.78 KB | 1 年前
    3
  • pdf文档 微博在线机器学习和深度学习实践-黄波

    实时训练 模型训练 模型部署 在线服务 离线验证 在线发布 在线验证 在线一致性/ 模型稳定性/… 一键打包 端口探测 蓝绿部署/灰度发布 AUC/准确率/ 召回率/… 流量切换 版本更新 全量发布 … verson1 verson2 … kubenetes/olsubmit 模型库 3 在线机器学习-模型服务部署 • 模型评估 • 模型上线部署前指标评估 • 周期使用验证样本进行点击率预估 周期使用验证样本进行点击率预估 • 待部署模型与线上模型进行指标对比,评估是否满足上线条件 • 一键部署 • 基于K8S的deployment模式,一键端口分配与模型服务部署 • 基于ZK的服务发现,一键进行流量灰度与发布 • 性能优化 • 通信优化:特征请求与模型计算单元化,在线样本格式压缩 • 计算优化:基于SSE/AVX 指令优化 3 在线机器学习-模型服务部署 • 模型更新频次效果对比
    0 码力 | 36 页 | 16.69 MB | 1 年前
    3
  • pdf文档 PyTorch OpenVINO 开发实战系列教程第一篇

    原型到产品开发的过程。其 SDK 主要基于 Python 语言,而 Python 语言作为流行的人工智能开发语言一直很受研究者与 开发者的欢迎。其模型训练支持CPU与GPU、支持分布式训练、 云部署、针对深度学习特定领域有不同的丰富的扩展库。 1.1.1 Pytorch 历史 Pytorch 在 2016 年由 facebook 发布的开源机器学习(深度 学习)框架,Pytorch 最初的来源历史可以追溯到另外两个 、模型部署 的压缩、量化、服务器端云化部署、推理端 SDK 支持等方面 Pytorch 也在不断的演化改进。 在操作系统与 SDK 支持方面,Pytorch 从最初的单纯支持 Python 语言到如今支持 Python/C++/Java 主流编程语言, 目前已经支持 Linux、Windows、MacOS 等主流的操作系统、 同时全面支持 Android 与 iOS 移动端部署。 在版本发布管理方面,Pytorch 方式直接 安装。 1.1.2 Pytorch 的模块与功能 Pytorch 当前支持绝大数的深度学习常见的算子操作,基于相 关的功能模块可以快速整合数据、构建与设计模型、实现模型 训练、导出与部署等操作。这些功能的相关模块主要有如下: 1)torch.nn 包,里面主要包含构建卷积神经网络的各种算子 操作,主要包括卷积操作(Conv2d、Conv1d、Conv3d)激 活函数、序贯模型
    0 码力 | 13 页 | 5.99 MB | 1 年前
    3
  • pdf文档 《TensorFlow 2项目进阶实战》6-业务落地篇:实现货架洞察Web应⽤

    搭建 AI SaaS 理论:10 分钟快速开发 AI SaaS • 搭建 AI SaaS 实战:10 分钟快速开发 AI SaaS • 交付 AI SaaS:10 分钟快速掌握容器部署 • 交付 AI SaaS:部署和测试 AI SaaS 目录 串联 AI 流程理论:商品检测与商品识别 检测模型 RetinaNet 前向转换和使用 加载检测推理模型 detector 查看分类器 classifier ai_pipeline.py 搭建 AI SaaS 实战:10 分钟快速开发 AI SaaS “Hello TensorFlow” Try it! 交付 AI SaaS:10 分钟快速掌握容器部署 更新依赖 requirements.txt 为 AI SaaS 编写 Dockerfile 为 AI SaaS 构建 Docker 镜像(TF 容器外) $ docker build –t 容器外) $ docker build –t tf2-ai-saas -f ai_saas/Dockerfile . “Hello TensorFlow” Try it! 交付 AI SaaS:部署和测试 AI SaaS 启动商品识别 AI SaaS 服务(GPU版本) $ docker run --runtime nvidia -it --rm --name tf2_ai_saas -p
    0 码力 | 54 页 | 6.30 MB | 1 年前
    3
  • pdf文档 《TensorFlow 快速入门与实战》6-实战TensorFlow验证码识别

    生成验证码数据集 • 输入与输出数据处理 • 模型结构设计 • 模型损失函数设计 • 模型训练过程分析 • 模型部署与效果演示 第六部分 目录 准备模型开发环境 第三方依赖包 数据集生成 • Pillow • captcha 模型可视化 • pydot 模型服务部署 • flask $ pip install Pillow captcha pydot flask Pillow 优化器对比:鞍点 优化器对比: 验证码识别模型 优化器对比: 验证码识别模型 “Hello TensorFlow” Try it 模型部署与效果演示 数据-模型-服务流水线 数据集 生成 数据 处理 模型 训练 参数 调优 模型 部署 识别 服务 使用 Flask 快速搭建 验证码识别服务 使用 Flask 启动 验证码识别服务 $ export FLASK_ENV=development
    0 码力 | 51 页 | 2.73 MB | 1 年前
    3
  • pdf文档 阿里云上深度学习建模实践-程孟力

    多模态预训练 Vit based 下游任务:  视频分类  视频打标签  推荐模型特征 解决方案: 小样本学习 小样本结构化模型 在线预测服务(EAS) • 一键部署 • 多模型 • 蓝绿部署 • 弹性扩缩 • 推理优化 ML Frameworks ML Service (PaaS) AI Service (SaaS) 机器学习框架(PAI-TensorFl AI SaaS服务(OCR、语音识别、推荐系统、金融风控、疾病预测等) Infrastructure PAI平台(Platform of Artificial Intelligence) • 一键部署、弹性扩缩 • 多框架、多语言 • 推理优化Blade • 多维度监控+报警 • 自定义镜像 • 全托管+半托管 • 分布式训练优化 • 超大资源池 智能标注 可视化建模(Designer)
    0 码力 | 40 页 | 8.51 MB | 1 年前
    3
共 20 条
  • 1
  • 2
前往
页
相关搜索词
TensorFlow快速入门实战上手训练模型部署服务onYarn深度学习遇上数据QCon北京2018未来都市智慧城市基于机器视觉陈宇恒KerasPythonAI千问qwen中文文档微博在线实践黄波PyTorchOpenVINO开发系列教程第一一篇第一篇业务落地实现货架洞察Web验证验证码识别阿里云上建模程孟力
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩