尚硅谷大数据技术之Hadoop(生产调优手册)分区2 写入数据 第一次溢出 排序 第二次溢出 Combiner Combiner 归并排序 归并排序 合并 Combiner为可选流程 压缩 写磁盘 分区1 分区2 分区1 排序 分区2 排序 排序 分区1 排序 分区2 排序 分区1 合并 分区2 合并 分区1 合并 分区2 合并 分区1 归并 分区2 归并 分区1 压缩 分区2 压缩 分区1 MapReduce优化(下) 分区1 输出 分区2 输出 分区1 输出 分区2 输出 分区1 输出 分区1 输出 内存缓冲 磁盘 数据 内存不够溢出到磁盘 归并 排序 分组 Reduce方法 对每个map来的 数据归并排序 按照相同key分组 Map2方法 输出数据 Map1方法 输出数据 Reduce1处理流程 拷贝 拷贝 4)mapreduce.reduce.memory 0 码力 | 41 页 | 2.32 MB | 1 年前3
Hadoop 概述发起数据传送时,Oracle Loader for Hadoop 将数据推送到 数据库中。如图 1-9 所示。Oracle Loader for Hadoop 利用 Hadoop 计 算资源进行排序、分区并在加载之前将数据转换成适配于 Oracle 的 数据类型。当加载数据时,在 Hadoop 上进行的数据预处理降低了 数据库 CPU 的使用率。这样就减少了对数据库应用程序的影响,减 第0 码力 | 17 页 | 583.90 KB | 1 年前3
大数据集成与Hadoop - IBMHDFS平台十分适合处理大型顺序操作,其中的数据读取“切 片”通常为64MB或128MB。通常情况下,除非应用程序加载 数据来管理相关任务,否则不会对HDFS文件进行分区或排 序。即使应用程序可以对生成的数据切片进行分区和排序, 也无法保证数据切片在HDFS系统中的位置正确。这意味着, 无法在该环境中有效管理数据搭配工作。数据搭配(Data collocation)至关重要,因为它可确保将联接(join)键相同的0 码力 | 16 页 | 1.23 MB | 1 年前3
共 3 条
- 1













