PromQL 从入门到精通有了解,得先搞清楚时 序数据。 认识时序数据 我们先来看一张图,图上是 5 台机器的内存可用率: 每个机器的内存可用率数据,体现为图上的一条线,我们称为 series,某个机器在某一时刻的内 存可用率数据,我们称为数据点,比如上图,2022-08-25 15:05:22 这个时刻,每个机器都有 一个可用率数据点,共计 5 个数据点。 上面的图是查询的最近一小时的,我们切换到 Table 视图,得到如下结果: 1 举一个例子来演示真实环境下的算术运算符的应用,比如之前的例子,对于内存可用率的指标 mem_available_percent 这个指标是采集器直接计算好的,如果采集器没有计算,而是上报了 原始指标 mem_available 和 mem_total,我们仍然可以使用 promql 计算出可用率指标: 逻辑上,是先根据 mem_available{app="clickhouse"} 的结果: 如果我们认为内存可用率小于60就是有问题的,想找出所有有问题的数据,只要在 promql 中 拼上 < 60 即可: 1 如上的方法,其实就是告警引擎的核心逻辑。告警规则里会要求用户配置promql以及执行频 率,告警引擎就会根据执行频率周期性执行,每次执行的时候就是拿着promql去查询,promql 中带有阈值,即上例中的 <60,所以如果所有机器的内存可用率都很高,比如维持在80~90,0 码力 | 16 页 | 2.77 MB | 1 年前3
1.6 利用夜莺扩展能力打造全方位监控系统Nightingale 众多企业已上生产,共同打磨夜莺 Server01 Server02 Agentd Agentd LoadBalance 1. 单机版Prom 2. 集群版m3db 3. 集群版n9e-tsdb 3种存储方案,按需选择 Agentd 夜莺设计实现 Agentd 数据采集 第四部分 监控系统的核心功能,是数据采集、存储、分析、展示,完 备性看采集能力0 码力 | 40 页 | 3.85 MB | 1 年前3
B站统⼀监控系统的设计,演进
与实践分享devops • 热爱新技术,热爱开源 • ⼩小宅男 故事的开始 B站炸了了.舆情监控(括弧笑脸) 我们的挑战 • 技术栈多 • 产品模块复杂 • 业务爆发式增⻓长 • 运维要求⾼高 当前情况: • 覆盖率低 • 误报,漏漏报多 • 告警⻛风暴暴 监控问题爆发: 重新定义的监控系统 ✦ 完整的监控体系 ✦ 科学的告警策略略 ✦ 统⼀一的告警中⼼心 完整的监控体系 ⽀支持任意维度label • cncf基⾦金金会 metric • 40w+/s的指标采集 • 10k+ 监控⽬目标 • 10+ prometheus节点 现状: • 性能 • ⾼高可⽤用 • 分布式 • 使⽤用成本 问题: ? 性能问题 • 本地ssd prometheus Shard A prometheus Shard B prometheus Shard0 码力 | 34 页 | 650.25 KB | 1 年前3
告警OnCall事件中心建设方法白皮书
有了这样一个故障协同的机制之后,故障被处理掉的概率就大幅提升了,后续再配合一些运营统计手段, 统计各个团队的平均故障止损时间,建立红黑榜,大家就会有更高的热情来处理故障。当然,人的热情再 高,也不如机器来得快,如果有些告警能够直接关联自动化处理逻辑,无疑可以大大增加事件闭环率。 告警自动处理 很多监控系统都可以配置 Webhook,当告警触发之后自动回调某个 HTTP 接口,来串联一些自动化的0 码力 | 23 页 | 1.75 MB | 1 年前3
共 4 条
- 1













