告警OnCall事件中心建设方法白皮书
性很高的渠道发出,用户可能会觉得单一渠道不可 靠,想用多个渠道同时发送的方式来保障告警触达率,这也属于告警规则配置不合理的范畴。 第四个原因是预期内的维护动作导致的。比如程序升级变更,如果进程重启时间过长,可能会导致关联的 服务告警,或者某个机器重启,忘记提前屏蔽了,也会产生一堆关联告警。 了解了常见原因,下面我们来看一下有哪些常见解法。 优化告警规则 类似 PagerDuty PagerDuty FlashDuty 这种产品,一定程度上是可以解决一些告警过多的问题,但如果能从告警规 则的源头做好优化,自然是事半功倍。很多公司的告警规则配置没有原则可循,每次故障复盘先看告警是 否漏报,一线工程师为了不背锅,自然是尽量多地提高告警覆盖面,但这么做的后果,就是告警过多,无 效告警占多数,长此以往,工程师疲惫不堪。 那么告警规则的配置应该遵照一个什么原则呢?虽然 Runbook 这个配置原则,是我最为推荐的原则,效果非常明显,其次就是告警分级原则。 每个告警都应该合理分级 基本每个监控系统都支持为告警规则配置不同的级别,基本上每个监控系统的用户也都知道应该做分级告 警。但是具体怎么分级,却没有一个行业共识,大家各做各的。这里我也分享一下我的理解,你可以参考 借鉴。 首先,不同级别的告警应该对应不同的处理逻辑,这样分级才有意义,比如通知渠道不同,通知范围不0 码力 | 23 页 | 1.75 MB | 1 年前3
B站统⼀监控系统的设计,演进
与实践分享cdn质量量 客户端质量量 • ⽤用户端⽹网络质量量 • 劫持情况 • 崩溃&卡顿 • 返回码 • 响应时间 • 错误率 服务端监控 ⽤用户端监控 如何推进? 服务端监控 场景 分析监控场景对应监控⼿手段 类型 metric类型 ⽇日志类型 ⾃自定义类型 ⼿手段 时间序列列数据 ⽇日志处理理流 ⾃自研 ⽤用户端监控 apm ⾃自研 客户端 播放器器 如何推进? 服务端监控 场景 分析监控场景对应监控⼿手段 类型 metric类型 ⽇日志类型 ⾃自定义类型 ⼿手段 时间序列列数据 ⽇日志处理理流 ⾃自研 ⽤用户端监控 apm ⾃自研 客户端 播放器器 metric⽅方案选型 • 能覆盖⼤大部分监控场景 • 固定⼏几种数据类型 ✦ Counter ✦ Gauge ✦ 等.. dashboard 报表 告警 统⼀一的告警中⼼心 解决什什么问题? • 告警源头多 • 告警⻛风暴暴, ⼤大量量重复告警 • 发送告警渠道多 • 重要告警没有及时到达 • 优化告警没有数据依据 问题 • 告警标准化 • 告警收敛 • 告警渠道管理理 • 告警升级 • 告警报表 核⼼心功能 API⽹网关 服务树 告警收敛 屏蔽规则 事件管理理 告警渠道0 码力 | 34 页 | 650.25 KB | 1 年前3
1.6 利用夜莺扩展能力打造全方位监控系统项目:https://github.com/didi/nightingale 官网:https://n9e.didiyun.com/ Nightingale 众多企业已上生产,共同打磨夜莺 上图展示部分社区用户,加入夜莺社群,请联系微信:UlricQin Nightingale 众多企业已上生产,共同打磨夜莺 Server01 Server02 Agentd Agentd LoadBalance0 码力 | 40 页 | 3.85 MB | 1 年前3
PromQL 从入门到精通的结果: 如果我们认为内存可用率小于60就是有问题的,想找出所有有问题的数据,只要在 promql 中 拼上 < 60 即可: 1 如上的方法,其实就是告警引擎的核心逻辑。告警规则里会要求用户配置promql以及执行频 率,告警引擎就会根据执行频率周期性执行,每次执行的时候就是拿着promql去查询,promql 中带有阈值,即上例中的 <60,所以如果所有机器的内存可用率都很高,比如维持在80~90,0 码力 | 16 页 | 2.77 MB | 1 年前3
共 4 条
- 1













