积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部系统运维(4)Prometheus(4)

语言

全部中文(简体)(4)

格式

全部PDF文档 PDF(4)
 
本次搜索耗时 0.010 秒,为您找到相关结果约 4 个.
  • 全部
  • 系统运维
  • Prometheus
  • 全部
  • 中文(简体)
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 告警OnCall事件中心建设方法白皮书

    能采用的 Zabbix,Kubernetes 的监控可能 用的 Prometheus(Kubernetes 可能有多套,以至于 Prometheus 可能有多套)或者 Nightingale, 日志的监控可能用的 Elastalert,如果上云了,可能还会有多套不同的云监控(尤其是多云场景下)。 监控系统的重心,通常是采集、存储、可视化、生成告警事件,但通常都不具有完备的事件后续处理能 通过排班、认领、升级这些机制,可以确保告警递达指定的人,但要处理告警的话,只有值班人员自己就 未必搞得定了,需要有协同机制把相关人都拉进来一起处理才可以。对于某个故障,可能同时有多个告警 事件产生,大家基于一个统一的故障协同,而不是基于一堆事件分别协同,这就需要把这多个事件收敛成 一个故障,下面我们来聊一下这个收敛逻辑。 告警收敛逻辑 一般收敛逻辑是三级收敛,event -> alert -> inc "host=host1"]) 从 event 到 alert 的这个收敛逻辑,我们叫做一级收敛。只有这个收敛逻辑还不够,告警信息还是比较 散,不能基于这些散乱的告警分别做协同,把多个 alert 收敛成一个 incident(故障),基于 incident 做协同才比较方便。但是,event 到 alert 是有一个固定的收敛逻辑的,可以通过程序自动收敛,而 alert 到 incident
    0 码力 | 23 页 | 1.75 MB | 1 年前
    3
  • pdf文档 B站统⼀监控系统的设计,演进 与实践分享

    • 分布式⽂文件 • 进程监控 业务层 • qps/tps • 耗时分布 • 饱和度 • 吞吐量量 • 依赖响应 • 缓存命中率 • 调⽤用链 • SLA • ⽇日志 播放质量量 • 点播/直播 • 播放卡顿 • 平均⾸首帧 • 播放失败率 • 弹幕加载 • cdn质量量 客户端质量量 • ⽤用户端⽹网络质量量 • 劫持情况 • 分析监控场景对应监控⼿手段 类型 metric类型 ⽇日志类型 ⾃自定义类型 ⼿手段 时间序列列数据 ⽇日志处理理流 ⾃自研 ⽤用户端监控 apm ⾃自研 客户端 播放器器 如何推进? 服务端监控 场景 分析监控场景对应监控⼿手段 类型 metric类型 ⽇日志类型 ⾃自定义类型 ⼿手段 时间序列列数据 ⽇日志处理理流 ⾃自研 ⽤用户端监控 apm 能覆盖⼤大部分监控场景 • 固定⼏几种数据类型 ✦ Counter ✦ Gauge ✦ 等.. • 时序数据 ✦ 具有统计特性 ✦ 具有规律律性 metric数据特征 选型原则 • 基于开源⽅方案,⼆二次开发 • 具备现代时间序列列数据库的特性 • 活跃项⽬目,具有成熟的⽣生态环境 结论 • prometheus • ⽀支持任意维度label • cncf基⾦金金会
    0 码力 | 34 页 | 650.25 KB | 1 年前
    3
  • pdf文档 1.6 利用夜莺扩展能力打造全方位监控系统

    监控数据采集,all in one的agentd Agentd 进程存 活 端口监 控 插件脚 本 日志监 控 网络设 备 中间件 类 数据库 类 • 支持在web上配置采集策略,不同的采集可以指定 不同的探针机器、目标机器,便于管理和知识传 承 • 独创在端上流式读取日志,根据正则提取指标的 机制,轻量易用,无业务侵入性 • 内置集成了多种数据库中间件的采集以及网络设
    0 码力 | 40 页 | 3.85 MB | 1 年前
    3
  • pdf文档 PromQL 从入门到精通

    0909-60)~1661570909之间的 increase 数值。但是原始监控数据并没有 1661570849、1661570909 这两个时刻的数值,怎么办呢? Prometheus只能基于现有的数据做外推,即使用最后一个点的数值减去第一个点的数值,得到 的结果除以时间差,再乘以60,即: (965323899880.0-965304237246.0)/(1661570900.0-1661570850 也没办法,这本来就是个预估 值,知道大概数量级就可以了,还是那句话,监控数据是采样数据,这么计算虽然不是那么准 确,但是成本低。 实际上,我们基于某个指标的历史所有数据计算分位值,意义不大,通常我们是基于最近一段时 间的增量数据来计算,比如基于10分钟区间的增量数据计算,就可以较为方便的知道,当前这 个10分钟的延迟是多少,上一个10分钟的延迟是多少。histogram_quantile
    0 码力 | 16 页 | 2.77 MB | 1 年前
    3
共 4 条
  • 1
前往
页
相关搜索词
告警OnCall事件中心建设方法白皮皮书白皮书监控系统设计演进实践分享1.6利用夜莺扩展能力打造方位全方位PromQLPrometheus
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩