积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部云计算&大数据(11)Kubernetes(11)

语言

全部中文(简体)(7)英语(3)俄语(1)

格式

全部PDF文档 PDF(9)PPT文档 PPT(2)
 
本次搜索耗时 0.011 秒,为您找到相关结果约 11 个.
  • 全部
  • 云计算&大数据
  • Kubernetes
  • 全部
  • 中文(简体)
  • 英语
  • 俄语
  • 全部
  • PDF文档 PDF
  • PPT文档 PPT
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 vmware组Kubernetes on vSphere Deep Dive KubeCon China VMware SIG

    VMware SIG Deep Dive into Kubernetes Scheduling Performance and high availability options for vSphere Steve Wong, Hui Luo VMware Cloud Native Applications Business Unit November 12, 2018 2 Open (sites, affinity groups, NUMA, etc.). ​This session will explain the options to gain better performance, resource optimization and availability through tuning of vSphere, and Kubernetes configuration the thread runs on, but can potentially come from other nodes with broad performance implications. Unpredictable performance? Swapping? This basically comes down to a choice of whether you would rather
    0 码力 | 25 页 | 2.22 MB | 1 年前
    3
  • ppt文档 绕过conntrack,使用eBPF增强 IPVS优化K8s网络性能

    eBPF Agenda 目录 01 Problems with K8s Service How to optimize 02 Comparison with industry Performance measurement 03 04 Future work 05 06 Lessons from eBPF What is K8s Service • It exposes a set control/data plane • Stably runs for two decades • Support rich scheduling algorithm • Cons • Performance cost caused by conntrack • Some bugs How to optimize • Guidelines • Use less CPU instructions Less modification to kernel Comparison with industry • Pitfalls • Performance of clusters of the same configure may differ • Performance of a cluster in different time slot may differ • Due to CPU oversold
    0 码力 | 24 页 | 1.90 MB | 1 年前
    3
  • pdf文档 KubeCon2020/腾讯会议大规模使用Kubernetes的技术实践

    service stability Ø Quota management to optimize resource orchestration efficiency Ø High performance and comprehensive autoscaling What is TKEx Ø Based on TKE (Tencent Kubernetes Engine) & EKS (Tencent deployment of online and offline services. • Support Service Mesh. • Large-scale and high-performance autoscaling capabilities. • Multi-tenant and quota management. • etc. TKEx Architecture EKS quota. Ø ValidatingWebhook to validate pod add request. DynamicQuota Large-scale and high-performance Autoscaling Motivation: Ø Reduce container OOM from bursted traffic. Ø Improve cluster resource
    0 码力 | 19 页 | 10.94 MB | 1 年前
    3
  • pdf文档 VMware SIG Deep Dive into Kubernetes Scheduling

    VMware SIG Deep Dive into Kubernetes Scheduling Performance and high availability options for vSphere Steve Wong, Michael Gasch KubeCon North America December 13, 2018 2 Open Source Community Relations (sites, affinity groups, NUMA, etc.). This session will explain the options to gain better performance, resource optimization and availability through tuning of vSphere, and Kubernetes configuration come from this node the thread runs on, but can potentially come from other nodes with broad performance implications. This basically comes down to a choice of whether you would rather have a fast
    0 码力 | 28 页 | 1.85 MB | 1 年前
    3
  • pdf文档 Putting an Invisible Shield on Kubernetes Secrets

    remote KMS • Use envelope encryption scheme • DEK & KEK Motivation: K8s Secrets Protection • Performance & latency • Network • Security • DEK in the clear in memory • Secret in the clear in memory isolation • Encrypted memory • SW/HW attacks prevented TEE-based KMS Plugin [1] • Address performance & latency concerns • Reduce / minimize remote KMS interactions w/o compromising security • Address kms-plugin-tools KMS Plugin as a Service • Motivation • SGX physical servers do not meet API servers’ performance requirements • Solution • Same TEE-based KMS-plugin runtime • Deployment modes • N (>=3) SGX
    0 码力 | 33 页 | 20.81 MB | 1 年前
    3
  • pdf文档 Using Kubernetes for handling second screen experience of european tv show

    technologies Best of breed-technologies Right tool for the right job Easy prototyping with php - good performance with GoLang Scaling and orchestration Containerized development and production environment cluster Monitoring Prometheus autodiscovery Grafana dashboards Graylogs search and dashboards Performance test Performancetest: LOCUST ● Test as code ● Highly scalable ● Less hardware consuming
    0 码力 | 28 页 | 3.86 MB | 1 年前
    3
  • pdf文档 QCon北京2018/QCon北京2018-《Kubernetes-+面向未来的开发和部署》-Michael+Chen

    to desired • Policy-based workload scheduler • Topology aware • Assists with availability, performance and capacity • Affinity/Anti-Affinity Capable The Kubernetes Worker Node Basic Components Master ation Developer Structured Data Metrics Alerts Events VMware vRealize Operations Capacity, Performance and Configuration Management Events Launch in Context Unstructured Data Logs Messages VMware
    0 码力 | 42 页 | 10.97 MB | 1 年前
    3
  • pdf文档 Operator Pattern 用 Go 扩展 Kubernetes 的最佳实践

    Operand Monitoring • Operator exposing metrics about its health • Operator exposes health and performance metrics about the Operand Alerting and Events • Operand sends useful alerts • Custom Resources onto best suited nodes Abnormality detection • Operator determines deviations from a standard performance profile Observerbility 日志、系统指标等采集、分析;监控配置与报警;性能 指标收集与分析等等。 Backup & Restore 备份策略、备份方式、恢复方式、备份管理等等。
    0 码力 | 21 页 | 3.06 MB | 9 月前
    3
  • ppt文档 Автоматизация управления ClickHouse-кластерами в Kubernetes

    переезда в k8s ● Есть сетевая FS (MooseFS) ● Уже есть небольшой Clickhouse cluster для хранения performance logs Взгляд с практической стороны Устанавливаем оператор ● https://github.com/Altinity/clickhouse-operator/
    0 码力 | 44 页 | 2.24 MB | 1 年前
    3
  • pdf文档 全球架构师峰会2019北京/大数据/Kubernetes 运行大数据工作负载的探索和实践&mdash

    Spark-operator Gaps for spark Ø Dynamic Resource Allocation Ø Spark external shuffle service Ø Performance Ø Security p Kerberos support Ø … Gaps for Spark Ø Resource Management: p Queue p Hierarchical
    0 码力 | 25 页 | 3.84 MB | 1 年前
    3
共 11 条
  • 1
  • 2
前往
页
相关搜索词
vmwareKubernetesonvSphereDeepDiveKubeConChinaVMwareSIG绕过conntrack使用eBPF增强IPVS优化K8s网络性能KubeCon2020腾讯会议大规规模大规模技术实践intoSchedulingPuttinganInvisibleShieldSecretsKailunQinAntGroupQCon北京2018面向未来面向未来开发部署MichaelChenOperatorPatternGo扩展最佳kubernetesClickHouse全球架构架构师峰会2019数据运行工作负载探索mdash
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩