积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部云计算&大数据(283)VirtualBox(91)OpenShift(46)机器学习(33)Pandas(32)Apache Kyuubi(29)Kubernetes(19)Istio(9)rancher(5)边缘计算(4)

语言

全部英语(193)中文(简体)(86)英语(3)中文(繁体)(1)

格式

全部PDF文档 PDF(256)其他文档 其他(24)PPT文档 PPT(2)DOC文档 DOC(1)
 
本次搜索耗时 0.021 秒,为您找到相关结果约 283 个.
  • 全部
  • 云计算&大数据
  • VirtualBox
  • OpenShift
  • 机器学习
  • Pandas
  • Apache Kyuubi
  • Kubernetes
  • Istio
  • rancher
  • 边缘计算
  • 全部
  • 英语
  • 中文(简体)
  • 英语
  • 中文(繁体)
  • 全部
  • PDF文档 PDF
  • 其他文档 其他
  • PPT文档 PPT
  • DOC文档 DOC
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 3 - Learning Techniques

    bring significant efficiency gains during the training phase, which is the focus of this chapter. We start this chapter with an introduction to sample efficiency and label efficiency, the two criteria Our journey of learning techniques also continues in the later chapters. Learning Techniques and Efficiency Data Augmentation and Distillation are widely different learning techniques. While data augmentation breadth as efficiency? To answer this question, let’s break down the two prominent ways to benchmark the model in the training phase namely sample efficiency and label efficiency. Sample Efficiency Sample
    0 码力 | 56 页 | 18.93 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 6 - Advanced Learning Techniques - Technical Review

    quality with a small number of labels. As we described in chapter 3’s ‘Learning Techniques and Efficiency’ section, labeling of training data is an expensive undertaking. Factoring in the costs of training can achieve while retaining the same labeling costs i.e., training data-efficient (specifically, label efficient) models. We will describe the general principles of Self-Supervised learning which are applicable a new task: 1. Data Efficiency: It relies heavily on labeled data, and hence achieving a high performance on a new task requires a large number of labels. 2. Compute Efficiency: Training for new tasks
    0 码力 | 31 页 | 4.03 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 1 - Introduction

    rapid growth. We will establish our motivation behind seeking efficiency in deep learning models. We will also introduce core areas of efficiency techniques (compression techniques, learning techniques, automation Our hope is that even if you just read this chapter, you would be able to appreciate why we need efficiency in deep learning models today, how to think about it in terms of metrics that you care about, and models is rate-limited by their efficiency. While efficiency can be an overloaded term, let us investigate two primary aspects: Training Efficiency Training Efficiency involves benchmarking the model
    0 码力 | 21 页 | 3.17 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 2 - Compression Techniques

    shorter.” Blaise Pascal In the last chapter, we discussed a few ideas to improve the deep learning efficiency. Now, we will elaborate on one of those ideas, the compression techniques. Compression techniques Tensorflow and Tensorflow Lite. An Overview of Compression One of the simplest approaches towards efficiency is compression to reduce data size. For the longest time in the history of computing, scientists representation of one or more layers in a neural network with a possible quality trade off. The efficiency goals could be the optimization of the model with respect to one or more of the footprint metrics
    0 码力 | 33 页 | 1.96 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 4 - Efficient Architectures

    improve model deployability by proposing novel ways to reduce model footprint and improve inference efficiency while preserving the problem solving capabilities of their giant counterparts. In the first chapter Suitable’. Since in this scenario we have only a few examples it is easy to manually assign them a label identifying which class a given animal belongs to. Puppies and cats would make instant favorites will find it cute. Refer to Table 4-2 for our assigned labels. Animal Embedding (cute, dangerous) Label: (suitable for the petting zoo)? dog (0.85, 0.05) Suitable cat (0.95, 0.05) Suitable snake (0.01
    0 码力 | 53 页 | 3.92 MB | 1 年前
    3
  • pdf文档 vmware组Kubernetes on vSphere Deep Dive KubeCon China VMware SIG

    but you can add more specified as NodeSelector in the Pod spec Affinity Zones – label nodes with failure zone/regions Taints / Tolerations – mark nodes with arbitrary labels which could rs • secrets • services • loadbalancers 17 Kubernetes Default Resource Management Goals Efficiency Fairness Quotas Prioritization Isolation 18 Kubernetes built-in resource management Enforcement resource reservations (not just shares) • with governed sharing of unutilized capacity for improved efficiency • Allows maintenance with less service level disruption VM DRS Cluster VM VM VM VM VM VM VM
    0 码力 | 25 页 | 2.22 MB | 1 年前
    3
  • pdf文档 VMware SIG Deep Dive into Kubernetes Scheduling

    but you can add more specified as NodeSelector in the Pod spec Affinity Zones – label nodes with failure zone/regions Taints / Tolerations – mark nodes with arbitrary labels which could rs • secrets • services • loadbalancers 17 Kubernetes Default Resource Management Goals Efficiency Fairness Quotas Prioritization Isolation 18 Kubernetes built-in resource management Enforcement resource reservations (not just shares) • with governed sharing of unutilized capacity for improved efficiency • Allows maintenance with less service level disruption VM DRS Cluster VM VM VM VM VM VM VM
    0 码力 | 28 页 | 1.85 MB | 1 年前
    3
  • epub文档 BAETYL 1.0.0 Documentation

    allocates the CPU, memory and other resources of each running instance accurately to improve the efficiency of resource utilization. Advantages Shielding Computing Framework: Baetyl provides two official 4295c169a7d32422. backend: [Optional] The network backend which is used to improve inference efficiency. Now support `halide`, `openvino`, `opencv`, `vulkan` and `default`. More detailed contents please supported detection object please refer to mscoco_label_map [https://github.com/tensorflow/models/blob/master/research/object_detection/data/mscoco_label_map.pbtxt]. When everything is done, we start Baetyl
    0 码力 | 135 页 | 15.44 MB | 1 年前
    3
  • pdf文档 Experiment 1: Linear Regression

    R2 ). If you’re using Mat- lab/Octave, run the following commands to plot your training set (and label the axes): figure % open a new f i g u r e window plot (x , y , ’ o ’ ) ; ylabel ( ’ Height in This difference means that preprocessing the inputs will significantly increase gradient descent’s efficiency. In your program, scale both types of inputs by their standard deviations and set their means to
    0 码力 | 7 页 | 428.11 KB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 7 - Automation

    Founder (Slack) We have talked about a variety of techniques in the last few chapters to improve efficiency and boost the quality of deep learning models. These techniques are just a small subset of the size IMG_SIZE = 264 def resize_image(image, label): image = tf.image.resize(image, [IMG_SIZE, IMG_SIZE]) image = tf.cast(image, tf.uint8) return image, label train_ds = train_ds.map(resize_image) val_ds
    0 码力 | 33 页 | 2.48 MB | 1 年前
    3
共 283 条
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 29
前往
页
相关搜索词
EfficientDeepLearningBookEDLChapterTechniquesAdvancedTechnicalReviewIntroductionCompressionArchitecturesvmwareKubernetesonvSphereDiveKubeConChinaVMwareSIGintoSchedulingBAETYL1.0DocumentationExperimentLinearRegressionAutomation
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩