keras tutorial
learning. Deep learning involves analyzing the input in layer by layer manner, where each layer progressively extracts higher level information about the input. Let us take a simple scenario of analyzing analyzing an image. Let us assume that your input image is divided up into a rectangular grid of pixels. Now, the first layer abstracts the pixels. The second layer understands the edges in the image. The Next the full object. Here, the feature extraction process goes from the output of one layer into the input of the next subsequent layer. By using this approach, we can process huge amount of features, which0 码力 | 98 页 | 1.57 MB | 1 年前3Keras: 基于 Python 的深度学习库
4 Flatten [source] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 5.2.5 Input [source] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 5.2.6 Reshape [source] 基于 PYTHON 的深度学习库 2 from keras.layers import Dense model.add(Dense(units=64, activation='relu', input_dim=100)) model.add(Dense(units=10, activation='softmax')) 在完成了模型的构建后, 可以使用 .compile() 来配置学习过程: Sequential([ Dense(32, input_shape=(784,)), Activation('relu'), Dense(10), Activation('softmax'), ]) 也可以使用 .add() 方法将各层添加到模型中: model = Sequential() model.add(Dense(32, input_dim=784)) model.add(Activation('relu'))0 码力 | 257 页 | 1.19 MB | 1 年前3《Efficient Deep Learning Book》[EDL] Chapter 4 - Efficient Architectures
Neural Nets (CNNs) were another important breakthrough that enabled learning spatial features in the input. Recurrent Neural Nets (RNNs) facilitated learning from the sequences and temporal data. These breakthroughs this representation an Embedding. An embedding is a vector of features that represent aspects of an input numerically. It must fulfill the following goals: a) To compress the information content of high-dimensional animal in a petting zoo. This is a binary classification problem in which our model classifies an input into one of the two classes: ‘Suitable’ and ‘Not Suitable’. Since in this scenario we have only a0 码力 | 53 页 | 3.92 MB | 1 年前3Scalable Stream Processing - Spark Streaming and Flink
actions): 1. Input operations 2. Transformation 3. Output operations 11 / 79 Operations on DStreams ▶ Input operations ▶ Transformation ▶ Output operations 12 / 79 Input Operations ▶ Every input DStream Flume, Kinesis, Twitter. 3. Custom sources, e.g., user-provided sources. 13 / 79 Input Operations ▶ Every input DStream is associated with a Receiver object. • It receives the data from a source and e.g., Kafka, Flume, Kinesis, Twitter. 3. Custom sources, e.g., user-provided sources. 13 / 79 Input Operations - Basic Sources ▶ Socket connection • Creates a DStream from text data received over0 码力 | 113 页 | 1.22 MB | 1 年前3pandas: powerful Python data analysis toolkit - 0.13.1
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 583 28 API Reference 585 28.1 Input/Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 4 5 4 3 5 5 5 [4 rows x 3 columns] A Panel setting operation on an arbitrary axis aligns the input to the Panel In [20]: p = pd.Panel(np.arange(16).reshape(2,4,2), ....: items=[’Item1’,’Item2’], as the original DataFrame filter • Reindex called with no arguments will now return a copy of the input object • TimeSeries is now an alias for Series. the property is_time_series can be used to distinguish0 码力 | 1219 页 | 4.81 MB | 1 年前3AWS LAMBDA Tutorial
below: AWS Lambda 70 Step 3 Now, a default code is created for Input Type Custom. Once you click Finish button the project gets created as shown below: Step 4 Now String> { @Override public String handleRequest(Object input, Context context) { context.getLogger().log("Input: " + input); // TODO: implement your handler return { @Override public String handleRequest(Object input, Context context) { context.getLogger().log("Input: " + input); System.out.println("AWS Lambda function name: " +0 码力 | 393 页 | 13.45 MB | 1 年前3pandas: powerful Python data analysis toolkit - 0.14.0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 645 28 API Reference 647 28.1 Input/Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . convenience wrapper around the other two and will delegate to specific function depending on the provided input (database table name or sql query). In practice, you have to provide a SQLAlchemy engine to the sql objects with NaN values (GH6444) • Regression in MultiIndex.from_product with a DatetimeIndex as input (GH6439) • Bug in str.extract when passed a non-default index (GH6348) • Bug in str.split when passed0 码力 | 1349 页 | 7.67 MB | 1 年前3AI大模型千问 qwen 中文文档
generated_ids = model.generate( model_inputs.input_ids, max_new_tokens=512 ) generated_ids = [ output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ �→ids, generated_ids) ] response TextStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True) generated_ids = model.generate( model_inputs.input_ids, max_new_tokens=512, streamer=streamer, ) 1.2.2 使用 vLLM 部署 要部署 Qwen1.5,我们建议您使用 vLLM。vLLM 是一个用于 generated_ids = model.generate( model_inputs.input_ids, max_new_tokens=512 ) generated_ids = [ output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ �→ids, generated_ids) ] response0 码力 | 56 页 | 835.78 KB | 1 年前3pandas: powerful Python data analysis toolkit - 0.15
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 797 32 API Reference 799 32.1 Input/Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . prior versions, the error messages didn’t look at the World Bank’s JSON response. Problem-inducing input were simply dropped prior to the request. The issue was that many good countries were cropped in the for list-like/Series input, and a np.timedelta64 for scalar input. It will now return a TimedeltaIndex for list-like input, Series for Series input, and Timedelta for scalar input. The arguments to pd0 码力 | 1579 页 | 9.15 MB | 1 年前3pandas: powerful Python data analysis toolkit - 0.15.1
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 783 32 API Reference 785 32.1 Input/Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . prior versions, the error messages didn’t look at the World Bank’s JSON response. Problem-inducing input were simply dropped prior to the request. The issue was that many good countries were cropped in the for list-like/Series input, and a np.timedelta64 for scalar input. It will now return a TimedeltaIndex for list-like input, Series for Series input, and Timedelta for scalar input. The arguments to pd0 码力 | 1557 页 | 9.10 MB | 1 年前3
共 310 条
- 1
- 2
- 3
- 4
- 5
- 6
- 31