积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部云计算&大数据(310)VirtualBox(113)Apache Kyuubi(40)机器学习(39)Pandas(32)OpenShift(24)Apache Flink(21)rancher(7)Hadoop(7)dapr(5)

语言

全部英语(250)中文(简体)(57)西班牙语(1)中文(繁体)(1)英语(1)

格式

全部PDF文档 PDF(288)其他文档 其他(22)
 
本次搜索耗时 0.187 秒,为您找到相关结果约 310 个.
  • 全部
  • 云计算&大数据
  • VirtualBox
  • Apache Kyuubi
  • 机器学习
  • Pandas
  • OpenShift
  • Apache Flink
  • rancher
  • Hadoop
  • dapr
  • 全部
  • 英语
  • 中文(简体)
  • 西班牙语
  • 中文(繁体)
  • 英语
  • 全部
  • PDF文档 PDF
  • 其他文档 其他
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 keras tutorial

    learning. Deep learning involves analyzing the input in layer by layer manner, where each layer progressively extracts higher level information about the input. Let us take a simple scenario of analyzing analyzing an image. Let us assume that your input image is divided up into a rectangular grid of pixels. Now, the first layer abstracts the pixels. The second layer understands the edges in the image. The Next the full object. Here, the feature extraction process goes from the output of one layer into the input of the next subsequent layer. By using this approach, we can process huge amount of features, which
    0 码力 | 98 页 | 1.57 MB | 1 年前
    3
  • pdf文档 Keras: 基于 Python 的深度学习库

    4 Flatten [source] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 5.2.5 Input [source] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 5.2.6 Reshape [source] 基于 PYTHON 的深度学习库 2 from keras.layers import Dense model.add(Dense(units=64, activation='relu', input_dim=100)) model.add(Dense(units=10, activation='softmax')) 在完成了模型的构建后, 可以使用 .compile() 来配置学习过程: Sequential([ Dense(32, input_shape=(784,)), Activation('relu'), Dense(10), Activation('softmax'), ]) 也可以使用 .add() 方法将各层添加到模型中: model = Sequential() model.add(Dense(32, input_dim=784)) model.add(Activation('relu'))
    0 码力 | 257 页 | 1.19 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 4 - Efficient Architectures

    Neural Nets (CNNs) were another important breakthrough that enabled learning spatial features in the input. Recurrent Neural Nets (RNNs) facilitated learning from the sequences and temporal data. These breakthroughs this representation an Embedding. An embedding is a vector of features that represent aspects of an input numerically. It must fulfill the following goals: a) To compress the information content of high-dimensional animal in a petting zoo. This is a binary classification problem in which our model classifies an input into one of the two classes: ‘Suitable’ and ‘Not Suitable’. Since in this scenario we have only a
    0 码力 | 53 页 | 3.92 MB | 1 年前
    3
  • pdf文档 Scalable Stream Processing - Spark Streaming and Flink

    actions): 1. Input operations 2. Transformation 3. Output operations 11 / 79 Operations on DStreams ▶ Input operations ▶ Transformation ▶ Output operations 12 / 79 Input Operations ▶ Every input DStream Flume, Kinesis, Twitter. 3. Custom sources, e.g., user-provided sources. 13 / 79 Input Operations ▶ Every input DStream is associated with a Receiver object. • It receives the data from a source and e.g., Kafka, Flume, Kinesis, Twitter. 3. Custom sources, e.g., user-provided sources. 13 / 79 Input Operations - Basic Sources ▶ Socket connection • Creates a DStream from text data received over
    0 码力 | 113 页 | 1.22 MB | 1 年前
    3
  • pdf文档 pandas: powerful Python data analysis toolkit - 0.13.1

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 583 28 API Reference 585 28.1 Input/Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 4 5 4 3 5 5 5 [4 rows x 3 columns] A Panel setting operation on an arbitrary axis aligns the input to the Panel In [20]: p = pd.Panel(np.arange(16).reshape(2,4,2), ....: items=[’Item1’,’Item2’], as the original DataFrame filter • Reindex called with no arguments will now return a copy of the input object • TimeSeries is now an alias for Series. the property is_time_series can be used to distinguish
    0 码力 | 1219 页 | 4.81 MB | 1 年前
    3
  • pdf文档 AWS LAMBDA Tutorial

    below: AWS Lambda 70 Step 3 Now, a default code is created for Input Type Custom. Once you click Finish button the project gets created as shown below: Step 4 Now String> { @Override public String handleRequest(Object input, Context context) { context.getLogger().log("Input: " + input); // TODO: implement your handler return { @Override public String handleRequest(Object input, Context context) { context.getLogger().log("Input: " + input); System.out.println("AWS Lambda function name: " +
    0 码力 | 393 页 | 13.45 MB | 1 年前
    3
  • pdf文档 pandas: powerful Python data analysis toolkit - 0.14.0

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 645 28 API Reference 647 28.1 Input/Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . convenience wrapper around the other two and will delegate to specific function depending on the provided input (database table name or sql query). In practice, you have to provide a SQLAlchemy engine to the sql objects with NaN values (GH6444) • Regression in MultiIndex.from_product with a DatetimeIndex as input (GH6439) • Bug in str.extract when passed a non-default index (GH6348) • Bug in str.split when passed
    0 码力 | 1349 页 | 7.67 MB | 1 年前
    3
  • pdf文档 AI大模型千问 qwen 中文文档

    generated_ids = model.generate( model_inputs.input_ids, max_new_tokens=512 ) generated_ids = [ output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ �→ids, generated_ids) ] response TextStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True) generated_ids = model.generate( model_inputs.input_ids, max_new_tokens=512, streamer=streamer, ) 1.2.2 使用 vLLM 部署 要部署 Qwen1.5,我们建议您使用 vLLM。vLLM 是一个用于 generated_ids = model.generate( model_inputs.input_ids, max_new_tokens=512 ) generated_ids = [ output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ �→ids, generated_ids) ] response
    0 码力 | 56 页 | 835.78 KB | 1 年前
    3
  • pdf文档 pandas: powerful Python data analysis toolkit - 0.15

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 797 32 API Reference 799 32.1 Input/Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . prior versions, the error messages didn’t look at the World Bank’s JSON response. Problem-inducing input were simply dropped prior to the request. The issue was that many good countries were cropped in the for list-like/Series input, and a np.timedelta64 for scalar input. It will now return a TimedeltaIndex for list-like input, Series for Series input, and Timedelta for scalar input. The arguments to pd
    0 码力 | 1579 页 | 9.15 MB | 1 年前
    3
  • pdf文档 pandas: powerful Python data analysis toolkit - 0.15.1

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 783 32 API Reference 785 32.1 Input/Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . prior versions, the error messages didn’t look at the World Bank’s JSON response. Problem-inducing input were simply dropped prior to the request. The issue was that many good countries were cropped in the for list-like/Series input, and a np.timedelta64 for scalar input. It will now return a TimedeltaIndex for list-like input, Series for Series input, and Timedelta for scalar input. The arguments to pd
    0 码力 | 1557 页 | 9.10 MB | 1 年前
    3
共 310 条
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 31
前往
页
相关搜索词
kerastutorialKeras基于Python深度学习EfficientDeepLearningBookEDLChapterArchitecturesScalableStreamProcessingSparkStreamingandFlinkpandaspowerfuldataanalysistoolkit0.13AWSLAMBDATutorial0.14AI模型千问qwen中文文档0.15
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩