积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部云计算&大数据(344)VirtualBox(113)机器学习(65)Apache Kyuubi(44)Pandas(32)OpenShift(23)Kubernetes(15)Apache Flink(11)边缘计算(6)Istio(5)

语言

全部英语(256)中文(简体)(79)中文(繁体)(3)英语(3)中文(简体)(2)西班牙语(1)

格式

全部PDF文档 PDF(320)其他文档 其他(24)
 
本次搜索耗时 0.019 秒,为您找到相关结果约 344 个.
  • 全部
  • 云计算&大数据
  • VirtualBox
  • 机器学习
  • Apache Kyuubi
  • Pandas
  • OpenShift
  • Kubernetes
  • Apache Flink
  • 边缘计算
  • Istio
  • 全部
  • 英语
  • 中文(简体)
  • 中文(繁体)
  • 英语
  • 中文(简体)
  • 西班牙语
  • 全部
  • PDF文档 PDF
  • 其他文档 其他
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 Model and Operate Datacenter by Kubernetes at eBay (提交版)

    Model and Operate Datacenter by Kubernetes at eBay 辛肖刚, Cloud Engineering Manager, ebay 梅岑恺, Senior Operation Manager, ebay Agenda About ebay Our fleet Kubernetes makes magic at ebay Model + Controller Controller How we model our datacenter Operation in large scale Q&A About ebay 177M Active buyers worldwide $22.7B Amount of eBay Inc. GMV $2.6B Reported revenue 62% International revenue 1.1B Kubernetes Onboard Provision Configuration Kubernetes You need onboard something from nothing! Let’s model a datacenter running Kubernetes Onboard Provision Configuration Kubernetes After you define your
    0 码力 | 25 页 | 3.60 MB | 1 年前
    3
  • pdf文档 The Future of Cloud Native Applications with Open Application Model (OAM) and Dapr

    The Future of Cloud Native Applications with Open Application Model (OAM) and Dapr @markrussinovich Application models Describes the topology of your application and its components The way developers services and data stores Programming models Distributed Application Runtime (Dapr) Open Application Model (OAM) https://oam.dev State of Cloud Native Application Platforms Kubernetes for applications of concerns Application focused Application focused Container infrastructure Open Application Model Service Job Namespace Secret Volume Endpoint ConfigMap VolumeAttach CronJob Deployment
    0 码力 | 51 页 | 2.00 MB | 1 年前
    3
  • pdf文档 Graph streaming algorithms - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    (Vasia) Kalavri
 vkalavri@bu.edu Spring 2020 4/28: Graph Streaming ??? Vasiliki Kalavri | Boston University 2020 Modeling the world as a graph 2 Social networks friend follows The web Actor-movie results for the search term “graph” ??? Vasiliki Kalavri | Boston University 2020 Basics 1 5 4 3 2 “node” or “vertex” “edge” 1 5 4 3 2 undirected graph directed graph 4 ??? Vasiliki Kalavri Kalavri | Boston University 2020 Graph streams Graph streams model interactions as events that update an underlying graph structure 5 Edge events: A purchase, a movie rating, a like on an online post
    0 码力 | 72 页 | 7.77 MB | 1 年前
    3
  • pdf文档 PyTorch Tutorial

    (and advantages) • Preview of Numpy & PyTorch & Tensorflow Numpy Tensorflow PyTorch Computation Graph Advantages (continued) • Which one do you think is better? Advantages (continued) • Which one (visualise computation graph) • Various other functions • loss (MSE,CE etc..) • optimizers Prepare Input Data •Load data •Iterate over examples Train Model •Train weights Evaluate Model •Visualise …... Model • In PyTorch, a model is represented by a regular Python class that inherits from the Module class. • Two components • __init__(self): it defines the parts that make up the model —in our
    0 码力 | 38 页 | 4.09 MB | 1 年前
    3
  • pdf文档 Elasticity and state migration: Part I - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    poles placement, sampling period, damping Cannot identify individual bottlenecks neither model 2-input operators ??? Vasiliki Kalavri | Boston University 2020 Heuristic models 11 • Metrics University 2020 src o1 o2 10 recs 10 recs 1 2 3 4 100 rec 100 recs Intuition: use the dataflow graph to extract operator dependencies and system instrumentation to collect accurate, representative University 2020 src o1 o2 10 recs 10 recs 1 2 3 4 100 rec 100 recs Intuition: use the dataflow graph to extract operator dependencies and system instrumentation to collect accurate, representative
    0 码力 | 93 页 | 2.42 MB | 1 年前
    3
  • pdf文档 阿里云上深度学习建模实践-程孟力

    样本分布不均匀 ✗ 隐私保护 • 多个环节 • 多种模型 ✗ 海量参数 ✗ 海量数据 从FM到DeepFM rt 增 加了10倍怎么优化? 2.模型效果优 化困难 1.方案复杂 Data Model Compute Platform 要求:  准确: 低噪声  全面: 同分布 模型选型:  容量大  计算量小 训练推理:  高qps, 低rt  支持超大模型  性价比 Tensorflow PyTorch Parameter Server MPI TreeModel SQL MapReduce Blink  场景丰富: 图像/视频/推荐/搜索  大数据+大模型: Model Zoo  跨场景+跨模态  开箱即用: 封装复杂性  白盒化, 可扩展性强  积极对接开源系统+模型 FTRL SGD Adam Solutions Librarys 优势: (user/item/attribute)  动态图 标准化: Standard Libraries Graph-Learn: 分布式图算法库 标准化: Standard Solutions Continuous Optimization: Active learning Data Label Model Serving CV / NLP解决方案: EAS Web App Mobile
    0 码力 | 40 页 | 8.51 MB | 1 年前
    3
  • pdf文档 Lecture 1: Overview

    interesting aspects of the data Examples: Discovering clusters Discovering latent factor Discovering graph structure Matrix completion Feng Li (SDU) Overview September 6, 2023 28 / 57 Unsupervised Learning: Discovering Graph Structures Sometimes we measure a set of correlated variables, and we would like to discover which ones are most correlated with which others This can be represented by a graph, in which (SDU) Overview September 6, 2023 47 / 57 Parametric vs Non-Parametric Models Parametric model We can train a model by using the training data to estimate parameters of it Use these parameters to make predictions
    0 码力 | 57 页 | 2.41 MB | 1 年前
    3
  • pdf文档 Experiment 1: Linear Regression

    available for Linux from Octave-Forge ). 2 Linear Regression Recall that the linear regression model is hθ(x) = θT x = n � j=0 θjxj, (1) where θ is the parameter which we need to optimize and x is dataset. There are m = 50 training examples, and you will use them to develop a linear regression model using gradient descent algorithm, based on which, we can predict the height given a new age value plotting your results later. We implement linear regression for this problem. The linear regression model in this case is hθ(x) = θT x = 1 � i=0 θixi = θ1x1 + θ2, (4) (1) Implement gradient descent using
    0 码力 | 7 页 | 428.11 KB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 1 - Introduction

    learning algorithms help build models, which as the name suggests is an approximate mathematical model of what outputs correspond to a given input. To illustrate, when you visit Netflix’s homepage, the might be popular with other users too. If we train a model to predict the probability based on your behavior and currently trending content, the model will assign a high probability to Seinfeld. While there the performance of the model scaled well with the number of labeled examples, since the network had a large number of parameters. Thus to extract the most out of the setup, the model needed a large number
    0 码力 | 21 页 | 3.17 MB | 1 年前
    3
  • pdf文档 Stream processing fundamentals - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    single-pass Updates arbitrary append-only Update rates relatively low high, bursty Processing Model query-driven / pull-based data-driven / push-based Queries ad-hoc continuous Latency relatively University 2020 Time-Series Model: The jth update is (j, A[j]) and updates arrive in increasing order of j, i.e. we observe the entries of A by increasing index. This can model time-series data streams: sequence of measurements from a temperature sensor • the volume of NASDAQ stock trades over time This model poses a severe limitation on the stream: updates cannot change past entries in A. 11 Useful in
    0 码力 | 45 页 | 1.22 MB | 1 年前
    3
共 344 条
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 35
前往
页
相关搜索词
ModelandOperateDatacenterbyKubernetesateBay提交TheFutureofCloudNativeApplicationswithOpenApplicationOAMDaprGraphstreamingalgorithmsCS591K1DataStreamProcessingAnalyticsSpring2020PyTorchTutorialElasticitystatemigrationPart阿里云上深度学习建模实践程孟力LectureOverviewExperimentLinearRegressionEfficientDeepLearningBookEDLChapterIntroductionprocessingfundamentals
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩