积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部云计算&大数据(123)Apache Kyuubi(35)Pandas(30)机器学习(18)VirtualBox(11)RocketMQ(9)Apache Flink(8)Kubernetes(3)云原生CNCF(2)Apache Karaf(2)

语言

全部英语(107)中文(简体)(15)中文(简体)(1)

格式

全部PDF文档 PDF(100)其他文档 其他(22)PPT文档 PPT(1)
 
本次搜索耗时 0.026 秒,为您找到相关结果约 123 个.
  • 全部
  • 云计算&大数据
  • Apache Kyuubi
  • Pandas
  • 机器学习
  • VirtualBox
  • RocketMQ
  • Apache Flink
  • Kubernetes
  • 云原生CNCF
  • Apache Karaf
  • 全部
  • 英语
  • 中文(简体)
  • 中文(简体)
  • 全部
  • PDF文档 PDF
  • 其他文档 其他
  • PPT文档 PPT
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 Graph streaming algorithms - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    they are added to V(t+1). Preliminaries ??? Vasiliki Kalavri | Boston University 2020 8 Some algorithms model graph streams a sequence of vertex events. A vertex stream consists of events that contain and all of its neighbors. Although this model can enable a theoretical analysis of streaming algorithms, it cannot adequately model real-world unbounded streams, as the neighbors cannot be known in compID = 1 compID = 6 ??? Vasiliki Kalavri | Boston University 2020 22 • How can we run such algorithms if the graph is continuously generated as a stream of edges? • How can we perform iterative
    0 码力 | 72 页 | 7.77 MB | 1 年前
    3
  • pdf文档 GSoC 2020 Apache Proposal Apache RocketMQ Scaler for KEDA

    build binary artifact) - Test and research DLedgerRoleChangeHandler.java, SlaveSynchronize.java, algorithms class : AllocateMessageQueueAveragelyByCircle,AllocateMachineRoomNearb y, AllocateMessageQueueConsistentHash Start RocketMQ Broker - Send & Receive message test case(add dependencies rocketmq-client), send async/sync/ 1way mode, consume message - Broadcast with consumer set to broadcast mode, register message transaction). Research about rocketmq multi-replica algorithms(based on DLedger). Download, test&run OpenMessaging Connect API and research about it algorithms - KEDA: research mainly about architecture
    0 码力 | 7 页 | 140.48 KB | 1 年前
    3
  • pdf文档 Apache Karaf Container 4.x - Documentation

    appenders property in the appender definition: For instance, you can create a AsyncAppender named async and asynchronously dispatch the log events to a JMS appender: Error handlers Sometime, appenders [appender-name].appenders=[comma-separated-list-of-appender-names] log4j.appender.async=org.apache.log4j.AsyncAppender log4j.appender.async.appenders=jms log4j.appender.jms=org.apache.log4j.net.JMSAppender ... {CRYPT} # # Set the encryption algorithm to use in Karaf JAAS login module # Supported encryption algorithms follow: # MD2 # MD5 # SHA-1 # SHA-256 If the encryption.enabled property is set to true
    0 码力 | 370 页 | 1.03 MB | 1 年前
    3
  • pdf文档 Rancher Kubernetes Cryptographic Library FIPS 140-2 Non-Proprietary Security Policy

    6/24/2015 [SP 800-131A r2] NIST SP 800-131A Rev. 2, Transitioning the Use of Cryptographic Algorithms and Key Lengths 3/21/2019 [SP 800-133 r2] NIST SP 800-133 Rev. 2, Recommendation for Cryptographic ...........9 7 Cryptographic Algorithms & Key Management ................................................................10 7.1 Approved Cryptographic Algorithms................................. 7.2 Allowed Cryptographic Algorithms ......................................................................................... 11 7.3 Non-Approved Cryptographic Algorithms .........................
    0 码力 | 16 页 | 551.69 KB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 1 - Introduction

    often tolerate approximate responses, since often there are no exact answers. Machine learning algorithms help build models, which as the name suggests is an approximate mathematical model of what outputs that you would end up clicking on, at that particular moment, with more data and sophisticated algorithms, these models can be trained to be fairly accurate over a longer term. Figure 1-1: Relation between training algorithms There has been substantial progress in machine learning algorithms over the past two decades. Stochastic Gradient Descent (SGD) and Backpropagation were the well-known algorithms designed
    0 码力 | 21 页 | 3.17 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 4 - Efficient Architectures

    number of examples / more than two features? In those cases, we could use classical machine learning algorithms like the Support Vector Machine4 (SVM) to learn classifiers that would do this for us. We could models: 1. Embedding Table Generation: Generate the embeddings for the inputs using machine learning algorithms of your choice. 2. Embedding Lookup: Look up the embeddings for the inputs in the embedding table embeddings. One example of an automated embedding generation technique is the word2vec family of algorithms6 (apart from others like GloVe7) which can learn embeddings for word tokens for NLP tasks. The
    0 码力 | 53 页 | 3.92 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 7 - Automation

    rest of the states (unimportant parameters). Figure 7-2: A comparison of hyperparameter search algorithms for two hyperparameters. The blue contours show the regions with positive results while the red search approach on the budget allocation to cap the resource utilization. Multi-Armed Bandit based algorithms allocate a finite amount of resources to a set of hyperparameter configurations. The trials for HyperBand to terminate the runs sooner if they do not show improvements for a number of epochs. The algorithms like HyperBand bring the field of HPO closer to the evolutionary approaches which are based on
    0 码力 | 33 页 | 2.48 MB | 1 年前
    3
  • pdf文档 QCon北京2018-《从键盘输入到神经网络--深度学习在彭博的应用》-李碧野

    ng_algorithms#/media/File:Moving_From_unknown_to_known_feature_spaces_based_on_TS-ELM_with_random_kernels_and_connections.tif https://commons.wikimedia.org/wiki/Category:Machine_learning_algorithms#/m andom_kernels_and_connections.tif https://commons.wikimedia.org/wiki/Category:Machine_learning_algorithms#/media/File:OPTICS.svg May be re-distributed in accordance with the terms of the CC-SA 4.0 license
    0 码力 | 64 页 | 13.45 MB | 1 年前
    3
  • pdf文档 Lecture 1: Overview

    Research Fellow, National University of Singapore, Singapore. Research Interests: Distributed Algorithms and Systems, Wireless Net- works, Mobile Computing, Internet of Things. Feng Li (SDU) Overview September 6, 2023 3 / 57 Course Information We will investigate fundamental concepts, techniques and algorithms in machine learning. The topics include linear regression, logistic re- gression, regularization Overview September 6, 2023 45 / 57 Active Learning Basic idea: Traditional supervised learning algorithms passively accept training data. Instead, query for annotations on informative images from the unlabeled
    0 码力 | 57 页 | 2.41 MB | 1 年前
    3
  • pdf文档 Cardinality and frequency estimation - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    Marianne, and Philippe Flajolet. Loglog counting of large cardinalities. European Symposium on Algorithms, 2003. • Flajolet, Philippe, et al. Hyperloglog: the analysis of a near-optimal cardinality summary: the count-min sketch and its applications. Journal of Algorithms (2005). • Gakhov, Andrii. Probabilistic Data Structures and Algorithms for Big Data Applications. 2019. Further reading
    0 码力 | 69 页 | 630.01 KB | 1 年前
    3
共 123 条
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 13
前往
页
相关搜索词
GraphstreamingalgorithmsCS591K1DataStreamProcessingandAnalyticsSpring2020GSoCApacheProposalRocketMQScalerforKEDAKarafContainerDocumentationRancherKubernetesCryptographicLibraryFIPS140NonProprietarySecurityPolicyEfficientDeepLearningBookEDLChapterIntroductionArchitecturesAutomationQCon北京2018键盘输入键盘输入神经网络神经网神经网络深度学习彭博应用李碧野LectureOverviewCardinalityfrequencyestimation
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩