积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部云计算&大数据(294)VirtualBox(113)OpenShift(75)Apache Kyuubi(44)Pandas(32)机器学习(5)RocketMQ(4)Apache Karaf(4)云原生CNCF(3)Harbor(3)

语言

全部英语(200)中文(简体)(93)中文(简体)(1)

格式

全部PDF文档 PDF(272)其他文档 其他(22)
 
本次搜索耗时 1.035 秒,为您找到相关结果约 294 个.
  • 全部
  • 云计算&大数据
  • VirtualBox
  • OpenShift
  • Apache Kyuubi
  • Pandas
  • 机器学习
  • RocketMQ
  • Apache Karaf
  • 云原生CNCF
  • Harbor
  • 全部
  • 英语
  • 中文(简体)
  • 中文(简体)
  • 全部
  • PDF文档 PDF
  • 其他文档 其他
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 Hadoop 3.0以及未来

    Hadoop 3.0以及未来 刘 轶 自我简介 • Apache Hadoop的committer和顷目管理委员会成员。 • ebay的Paid IM(互联网市场)部门架构师,领导ebay产品广告、互 联网市场数据和实验平台的架构设计。负责领导使用Hadoop、 Spark、Kafka、Cassandra等开源大数据顷目建立ebay的广告和数 据平台。 • 加入ebay前,在intel工作6年,大数据架构师,负责领导大数据的 MapReduce Paper HBase Hive Cloudera创立 Hortonworks创立 Hadoop 1.0发布 Hadoop 2.0 GA Spark成为顶级顷目 Hadoop 3.0 2017 Hadoop生态系统 文件存储层 HDFS 资源/任务调度 YARN 计算引擎MapReduce 计算引擎Spark NoSQL HBase 数据仓 库SQL 机器/深 度学习
    0 码力 | 33 页 | 841.56 KB | 1 年前
    3
  • pdf文档 Apache Karaf 3.0.5 Guides

    PAX Exam to write integration tests when developing applications using Karaf. Starting with Karaf 3.0 we've also included a component briding between Karaf and Pax Exam making it easier to write integration Exception { assertTrue(true); } } COMMANDS Basically the Pax Exam - Karaf bridge introduced with 3.0 should support all commands you know from Pax Exam 2.x. In addition we've added various additional
    0 码力 | 203 页 | 534.36 KB | 1 年前
    3
  • pdf文档 Apache Karaf Container 4.x - Documentation

    repository/org/apache/servicemix/bundles/ org.apache.servicemix.bundles.cglib/3.0_1/org.apache.servicemix.bundles.cglib-3.0_1.jar 35859 2013-12-06 10:52 repository/org/springframework/osgi/spring-osgi-io/1 │ true │ false │ 1 zabbix/zabbix-java-gateway │ Zabbix Java Gateway │ true │ false │ 13 jetty It’s not always easy to use a JMX client with the RMI protocol. Some monitoring tools (Nagios, Zabbix, …) are not native JMX clients. But most of them can use HTTP. More over, you may want to write
    0 码力 | 370 页 | 1.03 MB | 1 年前
    3
  • pdf文档 pandas: powerful Python data analysis toolkit - 0.24.0

    __git_version__ will return git commit sha of current build (GH21295). • Compatibility with Matplotlib 3.0 (GH22790). • Added Interval.overlaps(), arrays.IntervalArray.overlaps(), and IntervalIndex. overlaps() default integer index: In [3]: s = pd.Series([1, 3, 5, np.nan, 6, 8]) In [4]: s Out[4]: 0 1.0 1 3.0 2 5.0 3 NaN 4 6.0 5 8.0 dtype: float64 Creating a DataFrame by passing a NumPy array, with a 590397 5 1.0 2013-01-03 -0.238464 -0.486944 0.015596 5 2.0 2013-01-04 -0.274925 0.823338 -0.761681 5 3.0 2013-01-05 1.092525 1.164866 -0.846108 5 4.0 2013-01-06 1.001105 0.071785 -1.067411 5 5.0 A where
    0 码力 | 2973 页 | 9.90 MB | 1 年前
    3
  • pdf文档 pandas: powerful Python data analysis toolkit - 0.25.1

    default integer index: In [3]: s = pd.Series([1, 3, 5, np.nan, 6, 8]) In [4]: s Out[4]: 0 1.0 1 3.0 2 5.0 3 NaN 4 6.0 5 8.0 dtype: float64 Creating a DataFrame by passing a NumPy array, with a 226064 5 1.0 2013-01-03 -0.136964 -0.276600 -0.614256 5 2.0 2013-01-04 0.066430 0.886690 1.544564 5 3.0 2013-01-05 0.996132 0.368752 1.232876 5 4.0 2013-01-06 -0.827664 0.620576 -0.247042 5 5.0 A where -1.0 2013-01-03 -0.136964 -0.276600 -0.614256 -5 -2.0 2013-01-04 -0.066430 -0.886690 -1.544564 -5 -3.0 2013-01-05 -0.996132 -0.368752 -1.232876 -5 -4.0 2013-01-06 -0.827664 -0.620576 -0.247042 -5 -5.0
    0 码力 | 2833 页 | 9.65 MB | 1 年前
    3
  • pdf文档 pandas: powerful Python data analysis toolkit - 0.25.0

    default integer index: In [3]: s = pd.Series([1, 3, 5, np.nan, 6, 8]) In [4]: s Out[4]: 0 1.0 1 3.0 2 5.0 3 NaN 4 6.0 5 8.0 dtype: float64 Creating a DataFrame by passing a NumPy array, with a 446934 5 1.0 2013-01-03 -0.918029 -1.032644 1.599718 5 2.0 2013-01-04 -1.236791 -0.438204 0.101452 5 3.0 2013-01-05 -1.632181 -0.992838 0.741029 5 4.0 2013-01-06 0.017195 -1.035754 0.960719 5 5.0 A where -1.0 2013-01-03 -0.918029 -1.032644 -1.599718 -5 -2.0 2013-01-04 -1.236791 -0.438204 -0.101452 -5 -3.0 2013-01-05 -1.632181 -0.992838 -0.741029 -5 -4.0 2013-01-06 -0.017195 -1.035754 -0.960719 -5 -5.0
    0 码力 | 2827 页 | 9.62 MB | 1 年前
    3
  • pdf文档 pandas: powerful Python data analysis toolkit - 1.4.2

    the environment in which read_orc() can work. System Conda PyPI Linux Successful Failed(pyarrow==3.0 Successful) macOS Successful Failed Windows Failed Failed Access data in the cloud Dependency Minimum Out[11]: v1 v2 by1 by2 1 95 5.0 55.0 99 5.0 55.0 2 95 7.0 77.0 99 NaN NaN big damp 3.0 33.0 blue dry 3.0 33.0 red red 4.0 44.0 wet 1.0 11.0 For more details and examples see the groupby documentation ) + [val]) for x, val in np.ndenumerate(a)]) Out[29]: 0 1 2 3 0 0 0 0 1.0 1 0 0 1 2.0 2 0 0 2 3.0 3 0 0 3 4.0 4 0 1 0 5.0 .. .. .. .. ... 19 1 1 3 20.0 20 1 2 0 21.0 21 1 2 1 22.0 22 1 2 2 23
    0 码力 | 3739 页 | 15.24 MB | 1 年前
    3
  • pdf文档 pandas: powerful Python data analysis toolkit - 1.4.4

    the environment in which read_orc() can work. System Conda PyPI Linux Successful Failed(pyarrow==3.0 Successful) macOS Successful Failed Windows Failed Failed Access data in the cloud Dependency Minimum Out[11]: v1 v2 by1 by2 1 95 5.0 55.0 99 5.0 55.0 2 95 7.0 77.0 99 NaN NaN big damp 3.0 33.0 blue dry 3.0 33.0 red red 4.0 44.0 wet 1.0 11.0 For more details and examples see the groupby documentation ) + [val]) for x, val in np.ndenumerate(a)]) Out[29]: 0 1 2 3 0 0 0 0 1.0 1 0 0 1 2.0 2 0 0 2 3.0 3 0 0 3 4.0 4 0 1 0 5.0 .. .. .. .. ... 19 1 1 3 20.0 20 1 2 0 21.0 21 1 2 1 22.0 22 1 2 2 23
    0 码力 | 3743 页 | 15.26 MB | 1 年前
    3
  • pdf文档 pandas: powerful Python data analysis toolkit - 1.3.3

    the environment in which read_orc() can work. System Conda PyPI Linux Successful Failed(pyarrow==3.0 Successful) macOS Successful Failed Windows Failed Failed Access data in the cloud Dependency Minimum Out[11]: v1 v2 by1 by2 1 95 5.0 55.0 99 5.0 55.0 2 95 7.0 77.0 99 NaN NaN big damp 3.0 33.0 blue dry 3.0 33.0 red red 4.0 44.0 wet 1.0 11.0 For more details and examples see the groupby documentation ) + [val]) for x, val in np.ndenumerate(a)]) Out[29]: 0 1 2 3 0 0 0 0 1.0 1 0 0 1 2.0 2 0 0 2 3.0 3 0 0 3 4.0 4 0 1 0 5.0 .. .. .. .. ... 19 1 1 3 20.0 20 1 2 0 21.0 21 1 2 1 22.0 22 1 2 2 23
    0 码力 | 3603 页 | 14.65 MB | 1 年前
    3
  • pdf文档 pandas: powerful Python data analysis toolkit - 1.3.4

    the environment in which read_orc() can work. System Conda PyPI Linux Successful Failed(pyarrow==3.0 Successful) macOS Successful Failed Windows Failed Failed Access data in the cloud Dependency Minimum Out[11]: v1 v2 by1 by2 1 95 5.0 55.0 99 5.0 55.0 2 95 7.0 77.0 99 NaN NaN big damp 3.0 33.0 blue dry 3.0 33.0 red red 4.0 44.0 wet 1.0 11.0 For more details and examples see the groupby documentation ) + [val]) for x, val in np.ndenumerate(a)]) Out[29]: 0 1 2 3 0 0 0 0 1.0 1 0 0 1 2.0 2 0 0 2 3.0 3 0 0 3 4.0 4 0 1 0 5.0 .. .. .. .. ... 19 1 1 3 20.0 20 1 2 0 21.0 21 1 2 1 22.0 22 1 2 2 23
    0 码力 | 3605 页 | 14.68 MB | 1 年前
    3
共 294 条
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 30
前往
页
相关搜索词
Hadoop3.0以及未来ApacheKarafGuidesContainerDocumentationpandaspowerfulPythondataanalysistoolkit0.240.251.41.3
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩