积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部云计算&大数据(286)VirtualBox(113)Apache Kyuubi(44)Pandas(32)机器学习(26)OpenShift(21)Istio(9)rancher(8)Kubernetes(6)边缘计算(6)

语言

全部英语(250)中文(简体)(33)英语(2)俄语(1)

格式

全部PDF文档 PDF(261)其他文档 其他(24)PPT文档 PPT(1)
 
本次搜索耗时 0.349 秒,为您找到相关结果约 286 个.
  • 全部
  • 云计算&大数据
  • VirtualBox
  • Apache Kyuubi
  • Pandas
  • 机器学习
  • OpenShift
  • Istio
  • rancher
  • Kubernetes
  • 边缘计算
  • 全部
  • 英语
  • 中文(简体)
  • 英语
  • 俄语
  • 全部
  • PDF文档 PDF
  • 其他文档 其他
  • PPT文档 PPT
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 Apache Karaf Container 4.x - Documentation

    name and type of arguments and options. In term of development, you can still use the blueprint definition as you do in Karaf 2.x & 3.x (with the corresponding annotations). However, in Karaf 4.x, you SE 1.8 or greater (http://www.oracle.com/technetwork/java/javase/). • The JAVA_HOME environment variable must be set to the directory where the Java runtime is installed, 4.1.2. Using Apache Karaf binary download the features from Internet. Installation on Windows platform NOTE The JAVA_HOME environment variable has to be correctly defined. To accomplish that, press Windows key and Break key together, switch
    0 码力 | 370 页 | 1.03 MB | 1 年前
    3
  • pdf文档 Apache Karaf 3.0.5 Guides

    1.7.x or greater (http://www.oracle.com/technetwork/java/javase/). • The JAVA_HOME environment variable must be set to the directory where the Java runtime is installed, USING APACHE KARAF BINARY DISTRIBUTIONS download the features from Internet. Installation on Windows platform NB: the JAVA_HOME environment variable has to be correctly defined. To accomplish that, press Windows key and Break key together, switch works for sure and is short to type. Installation on Unix platforms NB: the JAVA_HOME environment variable has to be correctly defined. Check the current value using echo $JAVA_HOME If it's not correct
    0 码力 | 203 页 | 534.36 KB | 1 年前
    3
  • pdf文档 pandas: powerful Python data analysis toolkit - 0.17.0

    7 4 NaN 5 11 6 13 dtype: float64 • Added a DataFrame.round method to round the values to a variable number of decimal places (GH10568). In [49]: df = pd.DataFrame(np.random.random([3, 3]), columns=['A' Regression Results ============================================================================== Dep. Variable: hr No. Observations: 68 Model: Poisson Df Residuals: 63 Method: MLE Df Model: 4 Date: Fri, 09 value input. (GH9054) • Allow timedelta string conversion when leading zero is missing from time definition, ie 0:00:00 vs 00:00:00. (GH9570) 1.3. v0.16.1 (May 11, 2015) 37 pandas: powerful Python data
    0 码力 | 1787 页 | 10.76 MB | 1 年前
    3
  • pdf文档 Deploying and ScalingKubernetes with Rancher

    prevent disclosing the secrets in the definition files that define containers/clusters, Kubernetes encodes them in Secret objects for later referral in the definition files. 1.3.4 Application Health some key points to note here: • There were three pods created for the frontend, based on the RC definition. It is a Kubernetes best practice to not create pods directly and to only create them through from service definition on the host and forwards all the traffic to intended container and port. NodePort is chosen randomly from a pre-configured range, or can be specified in the definition. The service
    0 码力 | 66 页 | 6.10 MB | 1 年前
    3
  • pdf文档 pandas: powerful Python data analysis toolkit - 0.19.0

    value_labels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1118 pandas.io.stata.StataReader.variable_labels . . . . . . . . . . . . . . . . . . . . . . . . . . . 1118 pandas.io.stata.StataWriter.write_file 09:00:03 3.0 2013-01-01 09:00:05 NaN 2013-01-01 09:00:06 NaN Using the time-specification generates variable windows for this sparse data. In [20]: dft.rolling('2s').sum() Out[20]: B foo 2013-01-01 09:00:00 append now supports the ignore_index option (GH13677) • .to_stata() and StataWriter can now write variable labels to Stata dta files using a dictionary to make column names to labels (GH13535, GH13536)
    0 码力 | 1937 页 | 12.03 MB | 1 年前
    3
  • pdf文档 pandas: powerful Python data analysis toolkit - 0.19.1

    value_labels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1121 pandas.io.stata.StataReader.variable_labels . . . . . . . . . . . . . . . . . . . . . . . . . . . 1121 pandas.io.stata.StataWriter.write_file 09:00:03 3.0 2013-01-01 09:00:05 NaN 2013-01-01 09:00:06 NaN Using the time-specification generates variable windows for this sparse data. In [20]: dft.rolling('2s').sum() Out[20]: B foo 2013-01-01 09:00:00 append now supports the ignore_index option (GH13677) • .to_stata() and StataWriter can now write variable labels to Stata dta files using a dictionary to make column names to labels (GH13535, GH13536)
    0 码力 | 1943 页 | 12.06 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 6 - Advanced Learning Techniques - Technical Review

    let's assume that we have such a general model that works for natural language inputs. Then by definition the model should be able to encode the given text in a sequence of embeddings such that there is 6-12 shows multiple examples of pacing functions. The x-axis is the training iteration i.e. the variable described above, and the y-axis is the fraction of data that is enabled from the sorted training recap, refer to the two plots in figure 6-13. Both are plots of functions in a single variable, with the variable on the x-axis and being the y-axis, and we are trying to find the minima for both. On
    0 码力 | 31 页 | 4.03 MB | 1 年前
    3
  • pdf文档 pandas: powerful Python data analysis toolkit - 0.21.1

    value_labels . . . . . . . . . . . . . . . . . . . . . . . 1258 34.1.13.5 pandas.io.stata.StataReader.variable_labels . . . . . . . . . . . . . . . . . . . . . . 1258 34.1.13.6 pandas.io.stata.StataWriter.write_file packages’ test suites. Use @pytest.mark.slow instead, which achieves the same thing (GH16850) • Moved definition of MergeError to the pandas.errors module. • The signature of Series.set_axis() and DataFrame The .groupby(..).agg(..), .rolling(..).agg(..), and .resample(..).agg(..) syntax can ac- cept a variable of inputs, including scalars, list, and a dict of column names to scalars or lists. This provides
    0 码力 | 2207 页 | 8.59 MB | 1 年前
    3
  • pdf文档 pandas: powerful Python data analysis toolkit - 0.20.3

    value_labels . . . . . . . . . . . . . . . . . . . . . . . 1219 34.1.12.5 pandas.io.stata.StataReader.variable_labels . . . . . . . . . . . . . . . . . . . . . . 1219 34.1.12.6 pandas.io.stata.StataWriter.write_file The .groupby(..).agg(..), .rolling(..).agg(..), and .resample(..).agg(..) syntax can ac- cept a variable of inputs, including scalars, list, and a dict of column names to scalars or lists. This provides 09:00:03 3.0 2013-01-01 09:00:05 NaN 2013-01-01 09:00:06 NaN Using the time-specification generates variable windows for this sparse data. In [20]: dft.rolling('2s').sum() Out[20]: B foo 2013-01-01 09:00:00
    0 码力 | 2045 页 | 9.18 MB | 1 年前
    3
  • pdf文档 pandas: powerful Python data analysis toolkit - 0.15

    subplots=True may draw unnecessary minor xticks and yticks (GH7801) • Bug in StataReader which did not read variable labels in 117 files due to difference between Stata docu- mentation and implementation (GH7816) month/quarter/year defined by the frequency of the DateTimeIndex / Timestamp (GH4565, GH6998) • Local variable usage has changed in pandas.eval()/DataFrame.eval()/DataFrame.query() (GH5987). For the DataFrame locals – Local variables must be referred to explicitly. This means that even if you have a local variable that is not a column you must still refer to it with the ’@’ prefix. – You can have an expression
    0 码力 | 1579 页 | 9.15 MB | 1 年前
    3
共 286 条
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 29
前往
页
相关搜索词
ApacheKarafContainerDocumentation3.0GuidespandaspowerfulPythondataanalysistoolkit0.17DeployingandScalingKuberneteswithRancher0.19EfficientDeepLearningBookEDLChapterAdvancedTechniquesTechnicalReview0.210.200.15
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩