OpenShift Container Platform 4.10 CLI 工具
1.77. oc image extract 将文件从镜像复制到文件系统 用法示例 用法示例 # Add a new layer to the image and store the result on disk # This results in $(pwd)/v2/mysql/blobs,manifests oc image append --from mysql:latest file://mysql:local layer.tar.gz # Add a new layer to the image and store the result on disk in a designated directory # This will result in $(pwd)/mysql-local/v2/mysql/blobs,manifests oc image append --from containers of daemonset abc to 'nginx:1.9.1' oc set image daemonset abc *=nginx:1.9.1 # Print result (in yaml format) of updating nginx container image from local file, without hitting the server0 码力 | 120 页 | 1.04 MB | 1 年前3OpenShift Container Platform 4.13 CLI 工具
mysql:latest --to myregistry.com/myimage:latest layer.tar.gz # Add a new layer to the image and store the result on disk # This results in $(pwd)/v2/mysql/blobs,manifests oc image append --from mysql:latest file://mysql:local layer.tar.gz # Add a new layer to the image and store the result on disk in a designated directory # This will result in $(pwd)/mysql-local/v2/mysql/blobs,manifests oc image append --from containers of daemonset abc to 'nginx:1.9.1' oc set image daemonset abc *=nginx:1.9.1 # Print result (in yaml format) of updating nginx container image from local file, without hitting the server0 码力 | 128 页 | 1.11 MB | 1 年前3OpenShift Container Platform 4.8 CLI 工具
mysql:latest --to myregistry.com/myimage:latest layer.tar.gz # Add a new layer to the image and store the result on disk # This results in $(pwd)/v2/mysql/blobs,manifests oc image append --from mysql:latest file://mysql:local layer.tar.gz # Add a new layer to the image and store the result on disk in a designated directory # This will result in $(pwd)/mysql-local/v2/mysql/blobs,manifests oc image append --from containers of daemonset abc to 'nginx:1.9.1' oc set image daemonset abc *=nginx:1.9.1 # Print result (in yaml format) of updating nginx container image from local file, without hitting the server0 码力 | 152 页 | 1.24 MB | 1 年前3keras tutorial
and extensible API. Minimal structure - easy to achieve the result without any frills. It supports multiple platforms and backends. It is user friendly framework which runs on both CPU and another neuron to which it is connected. Each neuron processes a small information and then passes the result to another neuron and this process continues. This is the basic method used by our human brain to layer. The output layer process receives the data from last hidden layer and finally output the result. Keras 13 Convolutional Neural Network (CNN) Convolutional neural network0 码力 | 98 页 | 1.57 MB | 1 年前3pandas: powerful Python data analysis toolkit - 1.3.4
matplotlib . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 746 2.15.7 Plotting backends . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 747 2.16 Table data structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2749 4.10.4 Plotting backends . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2752 4.11 Developer 22 1 35 2 58 Name: Age, dtype: int64 When selecting a single column of a pandas DataFrame, the result is a pandas Series. To select the column, use the column label in between square brackets []. Note:0 码力 | 3605 页 | 14.68 MB | 1 年前3pandas: powerful Python data analysis toolkit - 1.3.3
matplotlib . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 745 2.15.7 Plotting backends . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 746 2.16 Table data structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2749 4.10.4 Plotting backends . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2752 4.11 Developer 22 1 35 2 58 Name: Age, dtype: int64 When selecting a single column of a pandas DataFrame, the result is a pandas Series. To select the column, use the column label in between square brackets []. Note:0 码力 | 3603 页 | 14.65 MB | 1 年前3pandas: powerful Python data analysis toolkit - 1.3.2
matplotlib . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 716 2.15.7 Plotting backends . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 717 2.16 Table data structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2670 4.10.4 Plotting backends . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2673 4.11 Developer 22 1 35 2 58 Name: Age, dtype: int64 When selecting a single column of a pandas DataFrame, the result is a pandas Series. To select the column, use the column label in between square brackets []. Note:0 码力 | 3509 页 | 14.01 MB | 1 年前3pandas: powerful Python data analysis toolkit - 1.2.3
matplotlib . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 672 2.15.7 Plotting backends . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 673 2.16 Computational structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2528 ix 4.7.4 Plotting backends . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2531 4.8 Developer 22 1 35 2 58 Name: Age, dtype: int64 When selecting a single column of a pandas DataFrame, the result is a pandas Series. To select the column, use the column label in between square brackets []. Note:0 码力 | 3323 页 | 12.74 MB | 1 年前3pandas: powerful Python data analysis toolkit - 1.2.0
matplotlib . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 672 2.15.7 Plotting backends . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 673 2.16 Computational structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2522 ix 4.7.4 Plotting backends . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2525 4.8 Developer 22 1 35 2 58 Name: Age, dtype: int64 When selecting a single column of a pandas DataFrame, the result is a pandas Series. To select the column, use the column label in between square brackets []. Note:0 码力 | 3313 页 | 10.91 MB | 1 年前3pandas: powerful Python data analysis toolkit - 1.4.2
matplotlib . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 749 2.15.7 Plotting backends . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 750 2.16 Table data structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2842 4.10.4 Plotting backends . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2845 4.11 Developer 22 1 35 2 58 Name: Age, dtype: int64 When selecting a single column of a pandas DataFrame, the result is a pandas Series. To select the column, use the column label in between square brackets []. Note:0 码力 | 3739 页 | 15.24 MB | 1 年前3
共 285 条
- 1
- 2
- 3
- 4
- 5
- 6
- 29